1. Hajjafari A, Sadr S, Rahdar A, Bayat M, Lotfalizadeh N, Dianaty S, et al. Exploring the integration of nanotechnology in the development and application of biosensors for enhanced detection and monitoring of colorectal cancer. Inorganic Chemistry Communications. 2024;164:112409.
https://doi.org/10.1016/j.inoche.2024.112409
|
2. Faiyazuddin M, Rahman SJQ, Anand G, Siddiqui RK, Mehta R, Khatib MN, et al. The impact of artificial intelligence on healthcare: a comprehensive review of advancements in diagnostics, treatment, and operational efficiency. Health Science Reports. 2025;8(1):e70312. https://doi.org/10.1002/hsr2.70312PMid:39763580 PMCid:PMC11702416
|
|
|
3. Alowais SA, Alghamdi SS, Alsuhebany N, Alqahtani T, Alshaya AI, Almohareb SN, et al. Revolutionizing healthcare: the role of artificial intelligence in clinical practice. BMC medical education. 2023;23(1):689. https://doi.org/10.1186/s12909-023-04698-zPMid:37740191 PMCid:PMC10517477
|
|
|
4. Chen ZH, Lin L, Wu CF, Li CF, Xu RH, Sun Y. Artificial intelligence for assisting cancer diagnosis and treatment in the era of precision medicine. Cancer Communications. 2021;41(11):1100-15. https://doi.org/10.1002/cac2.12215PMid:34613667 PMCid:PMC8626610
|
|
|
5. Bi WL, Hosny A, Schabath MB, Giger ML, Birkbak NJ, Mehrtash A, et al. Artificial intelligence in cancer imaging: clinical challenges and applications. CA: a cancer journal for clinicians. 2019;69(2):127-57. https://doi.org/10.3322/caac.21552PMid:30720861 PMCid:PMC6403009
|
|
|
6. Ahmad Z, Rahim S, Zubair M, Abdul-Ghafar J. Artificial intelligence (AI) in medicine, current applications and future role with special emphasis on its potential and promise in pathology: present and future impact, obstacles including costs and acceptance among pathologists, practical and philosophical considerations. A comprehensive review. Diagnostic pathology. 2021;16(1):24. https://doi.org/10.1186/s13000-021-01085-4PMid:33731170 PMCid:PMC7971952
|
|
|
7. Dixit S, Kumar A, Srinivasan K. A current review of machine learning and deep learning models in oral cancer diagnosis: recent technologies, open challenges, and future research directions. Diagnostics. 2023;13(7):1353. https://doi.org/10.3390/diagnostics13071353PMid:37046571 PMCid:PMC10093759
|
|
|
8. Carter SM, Rogers W, Win KT, Frazer H, Richards B, Houssami N. The ethical, legal and social implications of using artificial intelligence systems in breast cancer care. The Breast. 2020;49:25-32. https://doi.org/10.1016/j.breast.2019.10.001PMid:31677530 PMCid:PMC7375671
|
|
|
9. Marey A, Arjmand P, Alerab ADS, Eslami MJ, Saad AM, Sanchez N, et al. Explainability, transparency and black box challenges of AI in radiology: impact on patient care in cardiovascular radiology. Egyptian Journal of Radiology and Nuclear Medicine. 2024;55(1):183. https://doi.org/10.1186/s43055-024-01356-2
|
|
|
10. Sendak M, Elish MC, Gao M, Futoma J, Ratliff W, Nichols M, et al., editors. " The human body is a black box" supporting clinical decision-making with deep learning. Proceedings of the 2020 conference on fairness, accountability, and transparency; 2020. https://doi.org/10.1145/3351095.3372827
|
|
|
|
|
|
12. Nogaroli R. Ethical and Legal Aspects of Artificial Intelligence (AI) in Medical Service Contracts. Medical Liability and Artificial Intelligence: Brazilian and European Legal Approaches: Springer; 2025. p. 123-206. https://doi.org/10.1007/978-3-031-94306-5_4
|
|
|
13. Rashid M, Sharma M. AI‐Assisted Diagnosis and Treatment Planning-A Discussion of How AI Can Assist Healthcare Professionals in Making More Accurate Diagnoses and Treatment Plans for Diseases. AI in Disease Detection: Advancements and Applications. 2025:313-36. https://doi.org/10.1002/9781394278695.ch14
|
|
|
14. Elemento O, Leslie C, Lundin J, Tourassi G. Artificial intelligence in cancer research, diagnosis and therapy. Nature Reviews Cancer. 2021;21(12):747-52. https://doi.org/10.1038/s41568-021-00399-1PMid:34535775
|
|
|
15. Oyeniyi J, Oluwaseyi P. Emerging trends in AI-powered medical imaging: enhancing diagnostic accuracy and treatment decisions. International Journal of Enhanced Research In Science Technology & Engineering. 2024;13(4):81-94.
|
|
|
16. Durur-Subasi I, Özçelik ŞB. Artificial Intelligence in breast imaging: opportunities, challenges, and legal-ethical considerations. The Eurasian Journal of Medicine. 2023;55(Suppl 1):S114. https://doi.org/10.5152/eurasianjmed.2023.23360PMid:39128072 PMCid:PMC11075018
|
|
|
17. Sadr S, Hajjafari A, Rahdar A, Pandey S, Jafroodi PP, Lotfalizadeh N, et al. Gold nanobiosensors and Machine Learning: Pioneering breakthroughs in precision breast cancer detection. European Journal of Medicinal Chemistry Reports. 2024;12:100238. https://doi.org/10.1016/j.ejmcr.2024.100238
|
|
|
|
|
|
|
|
|
|
|
|
21. Sadr S, Rahdar A, Pandey S, Hajjafari A, Soroushianfar M, Sepahvand H, et al. Revolutionizing cancer detection: harnessing quantum dots and graphene-based nanobiosensors for lung and breast cancer diagnosis. BioNanoScience. 2025;15(1):111. https://doi.org/10.1007/s12668-024-01639-y
|
|
|
22. Iqbal MJ, Javed Z, Sadia H, Qureshi IA, Irshad A, Ahmed R, et al. Clinical applications of artificial intelligence and machine learning in cancer diagnosis: looking into the future. Cancer cell international. 2021;21(1):270. https://doi.org/10.1186/s12935-021-01981-1PMid:34020642 PMCid:PMC8139146
|
|
|
|
|
|
24. Panayides AS, Amini A, Filipovic ND, Sharma A, Tsaftaris SA, Young A, et al. AI in medical imaging informatics: current challenges and future directions. IEEE journal of biomedical and health informatics. 2020;24(7):1837-57. https://doi.org/10.1109/JBHI.2020.2991043PMid:32609615 PMCid:PMC8580417
|
|
|
|
|
|
26. Sebastian AM, Peter D. Artificial intelligence in cancer research: trends, challenges and future directions. Life. 2022;12(12):1991. https://doi.org/10.3390/life12121991PMid:36556356 PMCid:PMC9786074
|
|
|
27. Acs B, Rantalainen M, Hartman J. Artificial intelligence as the next step towards precision pathology. Journal of internal medicine. 2020;288(1):62-81. https://doi.org/10.1111/joim.13030PMid:32128929
|
|
|
|
|
|
29. Carriero A, Groenhoff L, Vologina E, Basile P, Albera M. Deep learning in breast cancer imaging: State of the art and recent advancements in early 2024. Diagnostics. 2024;14(8):848. https://doi.org/10.3390/diagnostics14080848PMid:38667493 PMCid:PMC11048882
|
|
|
30. Taib AG, Partridge GJW, Yao L, Darker I, Chen Y. The evaluation of artificial intelligence in mammography-based breast cancer screening: Is breast-level analysis enough? European Radiology. 2025:1-14. https://doi.org/10.1007/s00330-025-11733-8PMid:40563050
|
|
|
31. Mitsala A, Tsalikidis C, Pitiakoudis M, Simopoulos C, Tsaroucha AK. Artificial intelligence in colorectal cancer screening, diagnosis and treatment. A new era. Current Oncology. 2021;28(3):1581-607. https://doi.org/10.3390/curroncol28030149PMid:33922402 PMCid:PMC8161764
|
|
|
32. Wang K-S, Yu G, Xu C, Meng X-H, Zhou J, Zheng C, et al. Accurate diagnosis of colorectal cancer based on histopathology images using artificial intelligence. BMC medicine. 2021;19(1):76. https://doi.org/10.1186/s12916-021-01942-5PMid:33752648 PMCid:PMC7986569
|
|
|
33. McCaffrey C, Jahangir C, Murphy C, Burke C, Gallagher WM, Rahman A. Artificial intelligence in digital histopathology for predicting patient prognosis and treatment efficacy in breast cancer. Expert review of molecular diagnostics. 2024;24(5):363-77. https://doi.org/10.1080/14737159.2024.2346545PMid:38655907
|
|
|
34. Soliman A, Li Z, Parwani AV. Artificial intelligence's impact on breast cancer pathology: a literature review. Diagnostic pathology. 2024;19(1):38. https://doi.org/10.1186/s13000-024-01453-wPMid:38388367 PMCid:PMC10882736
|
|
|
35. Faa G, Coghe F, Pretta A, Castagnola M, Van Eyken P, Saba L, et al. Artificial intelligence models for the detection of microsatellite instability from whole-slide imaging of colorectal cancer. Diagnostics. 2024;14(15):1605. https://doi.org/10.3390/diagnostics14151605PMid:39125481 PMCid:PMC11311951
|
|
|
36. Agarwal S, Yadav AS, Dinesh V, Vatsav KSS, Prakash KSS, Jaiswal S. By artificial intelligence algorithms and machine learning models to diagnosis cancer. Materials Today: Proceedings. 2023;80:2969-75. https://doi.org/10.1016/j.matpr.2021.07.088
|
|
|
37. Silva HECd, Santos GNM, Leite AF, Mesquita CRM, Figueiredo PTdS, Stefani CM, et al. The use of artificial intelligence tools in cancer detection compared to the traditional diagnostic imaging methods: An overview of the systematic reviews. Plos one. 2023;18(10):e0292063. https://doi.org/10.1371/journal.pone.0292063PMid:37796946 PMCid:PMC10553229
|
|
|
38. Pinto-Coelho L. How artificial intelligence is shaping medical imaging technology: a survey of innovations and applications. Bioengineering. 2023;10(12):1435. https://doi.org/10.3390/bioengineering10121435PMid:38136026 PMCid:PMC10740686
|
|
|
39. Martinez-Ledesma E, Verhaak RG, Treviño V. Identification of a multi-cancer gene expression biomarker for cancer clinical outcomes using a network-based algorithm. Scientific reports. 2015;5(1):11966. https://doi.org/10.1038/srep11966PMid:26202601 PMCid:PMC5378879
|
|
|
40. Park Y, Heider D, Hauschild A-C. Integrative analysis of next-generation sequencing for next-generation cancer research toward artificial intelligence. Cancers. 2021;13(13):3148. https://doi.org/10.3390/cancers13133148PMid:34202427 PMCid:PMC8269018
|
|
|
|
|
|
42. Thaker NG, Dicker AP, Loaiza-Bonilla A, Wallace A, Kolman D, Godshalk Ruggles A, et al. The role of artificial intelligence in early cancer detection: Exploring early clinical applications. AI in Precision Oncology. 2024;1(2):91-105. https://doi.org/10.1089/aipo.2024.0003
|
|
|
|
|
|
44. Phillips M, Marsden H, Jaffe W, Matin RN, Wali GN, Greenhalgh J, et al. Assessment of accuracy of an artificial intelligence algorithm to detect melanoma in images of skin lesions. JAMA network open. 2019;2(10):e1913436. https://doi.org/10.1001/jamanetworkopen.2019.13436PMid:31617929 PMCid:PMC6806667
|
|
|
45. Jones O, Matin R, Van der Schaar M, Bhayankaram KP, Ranmuthu C, Islam M, et al. Artificial intelligence and machine learning algorithms for early detection of skin cancer in community and primary care settings: a systematic review. The Lancet Digital Health. 2022;4(6):e466-e76. https://doi.org/10.1016/S2589-7500(22)00023-1PMid:35623799
|
|
|
46. Patel RH, Foltz EA, Witkowski A, Ludzik J. Analysis of artificial intelligence-based approaches applied to non-invasive imaging for early detection of melanoma: a systematic review. Cancers. 2023;15(19):4694. https://doi.org/10.3390/cancers15194694PMid:37835388 PMCid:PMC10571810
|
|
|
|
|
|
48. Naseri H, Safaei AA. Diagnosis and prognosis of melanoma from dermoscopy images using machine learning and deep learning: a systematic literature review. BMC cancer. 2025;25(1):75. https://doi.org/10.1186/s12885-024-13423-yPMid:39806282 PMCid:PMC11727731
|
|
|
49. Tran KA, Kondrashova O, Bradley A, Williams ED, Pearson JV, Waddell N. Deep learning in cancer diagnosis, prognosis and treatment selection. Genome medicine. 2021;13(1):152. https://doi.org/10.1186/s13073-021-00968-xPMid:34579788 PMCid:PMC8477474
|
|
|
50. Hussain D, Al-Masni MA, Aslam M, Sadeghi-Niaraki A, Hussain J, Gu YH, et al. Revolutionizing tumor detection and classification in multimodality imaging based on deep learning approaches: Methods, applications and limitations. Journal of X-Ray Science and Technology. 2024;32(4):857-911. https://doi.org/10.3233/XST-230429PMid:38701131
|
|
|
51. Azer SA. Deep learning with convolutional neural networks for identification of liver masses and hepatocellular carcinoma: A systematic review. World journal of gastrointestinal oncology. 2019;11(12):1218. https://doi.org/10.4251/wjgo.v11.i12.1218PMid:31908726 PMCid:PMC6937442
|
|
|
|
|
|
53. Kumar RR, Priyadarshi R. Denoising and segmentation in medical image analysis: A comprehensive review on machine learning and deep learning approaches. Multimedia Tools and Applications. 2024:1-59. https://doi.org/10.1007/s11042-024-19313-6
|
|
|
54. Li X, Zhang L, Yang J, Teng F. Role of artificial intelligence in medical image analysis: A review of current trends and future directions. Journal of Medical and Biological Engineering. 2024;44(2):231-43. https://doi.org/10.1007/s40846-024-00863-x
|
|
|
55. ŞAHiN E, Arslan NN, Özdemir D. Unlocking the black box: an in-depth review on interpretability, explainability, and reliability in deep learning. Neural Computing and Applications. 2025;37(2):859-965. https://doi.org/10.1007/s00521-024-10437-2
|
|
|
56. Hassija V, Chamola V, Mahapatra A, Singal A, Goel D, Huang K, et al. Interpreting black-box models: a review on explainable artificial intelligence. Cognitive Computation. 2024;16(1):45-74. https://doi.org/10.1007/s12559-023-10179-8
|
|
|
57. Das A, Rad P. Opportunities and challenges in explainable artificial intelligence (xai): A survey. arXiv preprint arXiv:200611371. 2020.
|
|
|
58. Rawal A, McCoy J, Rawat DB, Sadler BM, Amant RS. Recent advances in trustworthy explainable artificial intelligence: Status, challenges, and perspectives. IEEE Transactions on Artificial Intelligence. 2021;3(6):852-66. https://doi.org/10.1109/TAI.2021.3133846
|
|
|
|
|
|
60. Huang D, Li Z, Jiang T, Yang C, Li N. Artificial intelligence in lung cancer: current applications, future perspectives, and challenges. Frontiers in Oncology. 2024;14:1486310. https://doi.org/10.3389/fonc.2024.1486310PMid:39763611 PMCid:PMC11700796
|
|
|
61. Sandbank J, Bataillon G, Nudelman A, Krasnitsky I, Mikulinsky R, Bien L, et al. Validation and real-world clinical application of an artificial intelligence algorithm for breast cancer detection in biopsies. NPJ breast cancer. 2022;8(1):129. https://doi.org/10.1038/s41523-022-00496-wPMid:36473870 PMCid:PMC9723672
|
|
|
62. Zhang B, Shi H, Wang H. Machine learning and AI in cancer prognosis, prediction, and treatment selection: a critical approach. Journal of multidisciplinary healthcare. 2023:1779-91. https://doi.org/10.2147/JMDH.S410301PMid:37398894 PMCid:PMC10312208
|
|
|
63. Sumartono E, Harliyanto R, Situmeang SMT, Siagian DS, Septaria E. The legal implications of data privacy laws, cybersecurity regulations, and ai ethics in a digital society. The Journal of Academic Science. 2024;1(2):103-10. https://doi.org/10.59613/29qypw51
|
|
|
|
|
|
65. Dlamini Z, Francies FZ, Hull R, Marima R. Artificial intelligence (AI) and big data in cancer and precision oncology. Computational and structural biotechnology journal. 2020;18:2300-11. https://doi.org/10.1016/j.csbj.2020.08.019PMid:32994889 PMCid:PMC7490765
|
|
|
66. Williamson SM, Prybutok V. Balancing privacy and progress: a review of privacy challenges, systemic oversight, and patient perceptions in AI-driven healthcare. Applied Sciences. 2024;14(2):675. https://doi.org/10.3390/app14020675
|
|
|
67. Shen J, Zhang CJ, Jiang B, Chen J, Song J, Liu Z, et al. Artificial intelligence versus clinicians in disease diagnosis: systematic review. JMIR medical informatics. 2019;7(3):e10010. https://doi.org/10.2196/10010PMid:31420959 PMCid:PMC6716335
|
|
|
|
|
|
69. Liu X, Faes L, Kale AU, Wagner SK, Fu DJ, Bruynseels A, et al. A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: a systematic review and meta-analysis. The lancet digital health. 2019;1(6):e271-e97. https://doi.org/10.1016/S2589-7500(19)30123-2PMid:33323251
|
|
|
70. Kourou K, Exarchos KP, Papaloukas C, Sakaloglou P, Exarchos T, Fotiadis DI. Applied machine learning in cancer research: A systematic review for patient diagnosis, classification and prognosis. Computational and structural biotechnology journal. 2021;19:5546-55. https://doi.org/10.1016/j.csbj.2021.10.006PMid:34712399 PMCid:PMC8523813
|
|
|
71. Pallumeera M, Giang JC, Singh R, Pracha NS, Makary MS. Evolving and Novel Applications of Artificial Intelligence in Cancer Imaging. Cancers. 2025;17(9):1510. https://doi.org/10.3390/cancers17091510PMid:40361437 PMCid:PMC12070983
|
|
|
72. Shahid MS, Imran A. Breast cancer detection using deep learning techniques: challenges and future directions. Multimedia Tools and Applications. 2025;84(6):3257-304. https://doi.org/10.1007/s11042-025-20606-7
|
|
|
73. Rigby E, Vidya R, Shaaban AM. Use of digital pathology and artificial intelligence (AI) in breast cancer diagnosis and management: Opportunities and challenges. Diagnostic Histopathology. 2025. https://doi.org/10.1016/j.mpdhp.2024.12.005
|
|
|
74. Zhang DY, Venkat A, Khasawneh H, Sali R, Zhang V, Pei Z. Implementation of digital pathology and artificial intelligence in routine pathology practice. Laboratory Investigation. 2024;104(9):102111. https://doi.org/10.1016/j.labinv.2024.102111PMid:39053633
|
|
|
75. Gao Y, Wen P, Liu Y, Sun Y, Qian H, Zhang X, et al. Application of artificial intelligence in the diagnosis of malignant digestive tract tumors: focusing on opportunities and challenges in endoscopy and pathology. Journal of Translational Medicine. 2025;23(1):412. https://doi.org/10.1186/s12967-025-06428-zPMid:40205603 PMCid:PMC11983949
|
|
|
76. Srivastav AK, Mishra MK, Lillard Jr JW, Singh R. Transforming pharmacogenomics and CRISPR gene editing with the power of artificial intelligence for precision medicine. Pharmaceutics. 2025;17(5):555. https://doi.org/10.3390/pharmaceutics17050555PMid:40430848 PMCid:PMC12114816
|
|
|
77. Koh HYK, Lam UTF, Ban KH-K, Chen ES. Machine learning optimized DriverDetect software for high precision prediction of deleterious mutations in human cancers. Scientific Reports. 2024;14(1):22618. https://doi.org/10.1038/s41598-024-71422-2PMid:39349509 PMCid:PMC11442673
|
|
|
|
|
|
|
|
|
80. Kalsi S, French H, Chhaya S, Madani H, Mir R, Anosova A, et al. The evolving role of artificial intelligence in radiotherapy treatment planning-A literature review. Clinical Oncology. 2024;36(10):596-605. https://doi.org/10.1016/j.clon.2024.06.005PMid:38981781
|
|
|
81. Sheng Y, Zhang J, Ge Y, Li X, Wang W, Stephens H, et al. Artificial intelligence applications in intensity modulated radiation treatment planning: an overview. Quantitative Imaging in Medicine and Surgery. 2021;11(12):4859. https://doi.org/10.21037/qims-21-208PMid:34888195 PMCid:PMC8611458
|
|
|
82. Dona Lemus OM, Cao M, Cai B, Cummings M, Zheng D. Adaptive radiotherapy: next-generation radiotherapy. Cancers. 2024;16(6):1206. https://doi.org/10.3390/cancers16061206PMid:38539540 PMCid:PMC10968833
|
|
|
83. Jeong C, Goh Y, Kwak J. Challenges and opportunities to integrate artificial intelligence in radiation oncology: a narrative review. The Ewha Medical Journal. 2024;47(4). https://doi.org/10.12771/emj.2024.e49PMid:40704006 PMCid:PMC12093566
|
|
|
84. Conroy L, Winter J, Khalifa A, Tsui G, Berlin A, Purdie T. Artificial intelligence for radiation treatment planning: Bridging gaps from retrospective promise to clinical reality. Clinical Oncology. 2025;37:103630. https://doi.org/10.1016/j.clon.2024.08.005PMid:39531894
|
|
|
85. Abejas AG, Santos DG, Costa FL, Botejara AC, Mota-Filipe H, Vergés ÀS. Ethical Challenges and Opportunities of AI in End-of-Life Palliative Care: Integrative Review. Interactive Journal of Medical Research. 2025;14(1):e73517. https://doi.org/10.2196/73517PMid:40302210 PMCid:PMC12120364
|
|
|
86. Riaz IB, Khan MA, Osterman TJ. Artificial intelligence across the cancer care continuum. Cancer. 2025;131(16):e70050. https://doi.org/10.1002/cncr.70050PMid:40810209 PMCid:PMC12351523
|
|
|
87. Saber AF, Ahmed SK, Hussein S, Qurbani K. Artificial intelligence-assisted nursing interventions in psychiatry for oral cancer patients: a concise narrative review. Oral Oncology Reports. 2024;10:100343. https://doi.org/10.1016/j.oor.2024.100343
|
|
|
88. Razavi J, Dhafar HO, BaHammam AS. Transforming health care with artificial intelligence: Regulations, challenges, and future directions. Saudi Journal for Health Sciences. 2025;14(1):11-22. https://doi.org/10.4103/sjhs.sjhs_26_25
|
|
|
89. Rabbani SA, El-Tanani M, Sharma S, Rabbani SS, El-Tanani Y, Kumar R, et al. Generative Artificial Intelligence in Healthcare: Applications, Implementation Challenges, and Future Directions. BioMedInformatics. 2025;5(3):37 https://doi.org/10.3390/biomedinformatics5030037
|
|
|