Challenges of Artificial Intelligence in Cancer Diagnosis: An Update on Future and Prospects

Document Type : Review Article/ Systematic Review Article/ Meta Analysis

Authors

1 Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran

2 Pharmacy graduate, Faculty of Pharmacy, Ayatollah Amoli Branch, Islamic Azad University, Iran

3 Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran

4 School of Medicine, Novosibirsk State University

5 Electrical Department, Faculty of Engineering, Islamic Azad University-South Tehran Branch, Tehran, Iran

6 Medical Doctor, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran

Abstract

Background: Artificial intelligence (AI) has become increasingly prominent in the medical field, particularly in the diagnosis of cancer.
 
Objectives: This comprehensive review was conducted to review the challenges of AI in cancer diagnosis.
 
Methods: This comprehensive review was conducted through a systematic search of major scientific databases, including PubMed, Scopus, Web of Science, and IEEE Xplore, utilizing a combination of keywords and Medical Subject Headings (MeSH) terms such as “artificial intelligence,” “machine learning,” “deep learning,” “neural networks,” “cancer diagnosis,” “oncological imaging,” “pathology,” “biomarkers,” and “precision oncology,” covering the period from January 2019 to December 2024 to capture the most relevant and impactful studies in this rapidly evolving field. The inclusion criteria were focused on peer-reviewed original research articles, significant review papers, and high-impact conference proceedings that demonstrated a direct application of AI algorithms in diagnostic procedures, while exclusion criteria encompassed non-English publications, studies with insufficient methodological detail, articles not focused on diagnostic applications, and editorials or opinion pieces without original data, ensuring a robust and evidence-based analysis of the current landscape.
 
Results: The challenges in the widespread utilization of this technology in clinical settings are discussed. Deep learning algorithms, especially convolutional neural networks (CNN), can identify suspicious areas in mammograms, CT scans, and MRI images that doctors may easily overlook. These capabilities improve accuracy and reduce human errors in cancer diagnosis. In addition to image analysis, AI can also analyze patients' molecular and genetic data. Using genomic and proteomic data, this technology can identify gene mutations and specific biological markers of cancer. As a result, early diagnosis and selection of targeted patient treatments are carried out with greater accuracy. However, despite significant progress in this field, several challenges remain, including the accurate interpretation of data, the need for substantial training data, and the ability to generalize algorithms to diverse populations.
 
Conclusion: In conclusion, AI is fundamentally augmenting the field of cancer diagnostics, moving from a theoretical promise to a powerful clinical tool. The evidence demonstrates that AI algorithms, particularly deep learning models, offer significant and measurable benefits.

Keywords


Acknowledgements: Not applicable.

 

Availability of data and materials: The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

 

Conflicts of interests: The authors declare no conflict of interest.

 

Consent for publication: Not applicable.

 

Ethics approval and consent to participate: The present study was conducted in terms of the principles of the revised Declaration of Helsinki, which is a statement of ethical principles that directs physicians and other participants in medical research involving human subjects.

 

Financial disclosure: No funding was received to conduct this study.

 

Author contributions: Conceptualization: [Alireza Omeanzadeh], Methodology: [All authors]; Formal analysis and investigation: [All authors]; Writing-original draft preparation: [All authors]; Writing - review and editing: [All Authors]; Funding acquisition: [Self-funding]; Supervision: [Alireza Omeanzadeh]. All authors checked and approved the final version of the manuscript for publication in the present journal.

 

Open Access Policy: This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/

1. Hajjafari A, Sadr S, Rahdar A, Bayat M, Lotfalizadeh N, Dianaty S, et al. Exploring the integration of nanotechnology in the development and application of biosensors for enhanced detection and monitoring of colorectal cancer. Inorganic Chemistry Communications. 2024;164:112409.
https://doi.org/10.1016/j.inoche.2024.112409
 
2. Faiyazuddin M, Rahman SJQ, Anand G, Siddiqui RK, Mehta R, Khatib MN, et al. The impact of artificial intelligence on healthcare: a comprehensive review of advancements in diagnostics, treatment, and operational efficiency. Health Science Reports. 2025;8(1):e70312.
https://doi.org/10.1002/hsr2.70312
PMid:39763580 PMCid:PMC11702416  
 
3. Alowais SA, Alghamdi SS, Alsuhebany N, Alqahtani T, Alshaya AI, Almohareb SN, et al. Revolutionizing healthcare: the role of artificial intelligence in clinical practice. BMC medical education. 2023;23(1):689.
https://doi.org/10.1186/s12909-023-04698-z
PMid:37740191 PMCid:PMC10517477  
 
4. Chen ZH, Lin L, Wu CF, Li CF, Xu RH, Sun Y. Artificial intelligence for assisting cancer diagnosis and treatment in the era of precision medicine. Cancer Communications. 2021;41(11):1100-15.
https://doi.org/10.1002/cac2.12215
PMid:34613667 PMCid:PMC8626610  
 
5. Bi WL, Hosny A, Schabath MB, Giger ML, Birkbak NJ, Mehrtash A, et al. Artificial intelligence in cancer imaging: clinical challenges and applications. CA: a cancer journal for clinicians. 2019;69(2):127-57.
https://doi.org/10.3322/caac.21552
PMid:30720861 PMCid:PMC6403009  
 
6. Ahmad Z, Rahim S, Zubair M, Abdul-Ghafar J. Artificial intelligence (AI) in medicine, current applications and future role with special emphasis on its potential and promise in pathology: present and future impact, obstacles including costs and acceptance among pathologists, practical and philosophical considerations. A comprehensive review. Diagnostic pathology. 2021;16(1):24.
https://doi.org/10.1186/s13000-021-01085-4
PMid:33731170 PMCid:PMC7971952  
 
7. Dixit S, Kumar A, Srinivasan K. A current review of machine learning and deep learning models in oral cancer diagnosis: recent technologies, open challenges, and future research directions. Diagnostics. 2023;13(7):1353.
https://doi.org/10.3390/diagnostics13071353
PMid:37046571 PMCid:PMC10093759  
 
8. Carter SM, Rogers W, Win KT, Frazer H, Richards B, Houssami N. The ethical, legal and social implications of using artificial intelligence systems in breast cancer care. The Breast. 2020;49:25-32.
https://doi.org/10.1016/j.breast.2019.10.001
PMid:31677530 PMCid:PMC7375671  
 
9. Marey A, Arjmand P, Alerab ADS, Eslami MJ, Saad AM, Sanchez N, et al. Explainability, transparency and black box challenges of AI in radiology: impact on patient care in cardiovascular radiology. Egyptian Journal of Radiology and Nuclear Medicine. 2024;55(1):183.
https://doi.org/10.1186/s43055-024-01356-2  
 
10. Sendak M, Elish MC, Gao M, Futoma J, Ratliff W, Nichols M, et al., editors. " The human body is a black box" supporting clinical decision-making with deep learning. Proceedings of the 2020 conference on fairness, accountability, and transparency; 2020.
https://doi.org/10.1145/3351095.3372827  
 
11. Murad NY, Hasan MH, Azam MH, Yousuf N, Yalli JS. Unraveling the black box: A review of explainable deep learning healthcare techniques. IEEE Access. 2024;12:66556-68.
https://doi.org/10.1109/ACCESS.2024.3398203  
 
12. Nogaroli R. Ethical and Legal Aspects of Artificial Intelligence (AI) in Medical Service Contracts. Medical Liability and Artificial Intelligence: Brazilian and European Legal Approaches: Springer; 2025. p. 123-206.
https://doi.org/10.1007/978-3-031-94306-5_4  
 
13. Rashid M, Sharma M. AI‐Assisted Diagnosis and Treatment Planning-A Discussion of How AI Can Assist Healthcare Professionals in Making More Accurate Diagnoses and Treatment Plans for Diseases. AI in Disease Detection: Advancements and Applications. 2025:313-36.
https://doi.org/10.1002/9781394278695.ch14  
 
14. Elemento O, Leslie C, Lundin J, Tourassi G. Artificial intelligence in cancer research, diagnosis and therapy. Nature Reviews Cancer. 2021;21(12):747-52.
https://doi.org/10.1038/s41568-021-00399-1
PMid:34535775  
 
15. Oyeniyi J, Oluwaseyi P. Emerging trends in AI-powered medical imaging: enhancing diagnostic accuracy and treatment decisions. International Journal of Enhanced Research In Science Technology & Engineering. 2024;13(4):81-94.  
 
16. Durur-Subasi I, Özçelik ŞB. Artificial Intelligence in breast imaging: opportunities, challenges, and legal-ethical considerations. The Eurasian Journal of Medicine. 2023;55(Suppl 1):S114.
https://doi.org/10.5152/eurasianjmed.2023.23360
PMid:39128072 PMCid:PMC11075018  
 
17. Sadr S, Hajjafari A, Rahdar A, Pandey S, Jafroodi PP, Lotfalizadeh N, et al. Gold nanobiosensors and Machine Learning: Pioneering breakthroughs in precision breast cancer detection. European Journal of Medicinal Chemistry Reports. 2024;12:100238.
https://doi.org/10.1016/j.ejmcr.2024.100238  
 
18. Fitzgerald RC, Antoniou AC, Fruk L, Rosenfeld N. The future of early cancer detection. Nature medicine. 2022;28(4):666-77.
https://doi.org/10.1038/s41591-022-01746-x
PMid:35440720  
 
19. Schiffman JD, Fisher PG, Gibbs P. Early detection of cancer: past, present, and future. American Society of Clinical Oncology Educational Book. 2015;35(1):57-65.
https://doi.org/10.14694/EdBook_AM.2015.35.57
PMid:25993143  
 
20. Crosby D, Bhatia S, Brindle KM, Coussens LM, Dive C, Emberton M, et al. Early detection of cancer. Science. 2022;375(6586):eaay9040.
https://doi.org/10.1126/science.aay9040
PMid:35298272  
 
21. Sadr S, Rahdar A, Pandey S, Hajjafari A, Soroushianfar M, Sepahvand H, et al. Revolutionizing cancer detection: harnessing quantum dots and graphene-based nanobiosensors for lung and breast cancer diagnosis. BioNanoScience. 2025;15(1):111.
https://doi.org/10.1007/s12668-024-01639-y  
 
22. Iqbal MJ, Javed Z, Sadia H, Qureshi IA, Irshad A, Ahmed R, et al. Clinical applications of artificial intelligence and machine learning in cancer diagnosis: looking into the future. Cancer cell international. 2021;21(1):270.
https://doi.org/10.1186/s12935-021-01981-1
PMid:34020642 PMCid:PMC8139146  
 
23. Khalifa M, Albadawy M. AI in diagnostic imaging: revolutionising accuracy and efficiency. Computer Methods and programs in biomedicine update. 2024;5:100146.
https://doi.org/10.1016/j.cmpbup.2024.100146  
 
24. Panayides AS, Amini A, Filipovic ND, Sharma A, Tsaftaris SA, Young A, et al. AI in medical imaging informatics: current challenges and future directions. IEEE journal of biomedical and health informatics. 2020;24(7):1837-57.
https://doi.org/10.1109/JBHI.2020.2991043
PMid:32609615 PMCid:PMC8580417  
 
25. Obuchowicz R, Strzelecki M, Piórkowski A. Clinical applications of artificial intelligence in medical imaging and image processing-A review. MDPI; 2024. p. 1870.
https://doi.org/10.3390/books978-3-7258-1260-8  
 
26. Sebastian AM, Peter D. Artificial intelligence in cancer research: trends, challenges and future directions. Life. 2022;12(12):1991.
https://doi.org/10.3390/life12121991
PMid:36556356 PMCid:PMC9786074  
 
27. Acs B, Rantalainen M, Hartman J. Artificial intelligence as the next step towards precision pathology. Journal of internal medicine. 2020;288(1):62-81.
https://doi.org/10.1111/joim.13030
PMid:32128929  
 
28. Shafi S, Parwani AV. Artificial intelligence in diagnostic pathology. Diagnostic pathology. 2023;18(1):109.
https://doi.org/10.1186/s13000-023-01375-z
PMid:37784122 PMCid:PMC10546747  
 
29. Carriero A, Groenhoff L, Vologina E, Basile P, Albera M. Deep learning in breast cancer imaging: State of the art and recent advancements in early 2024. Diagnostics. 2024;14(8):848.
https://doi.org/10.3390/diagnostics14080848
PMid:38667493 PMCid:PMC11048882  
 
30. Taib AG, Partridge GJW, Yao L, Darker I, Chen Y. The evaluation of artificial intelligence in mammography-based breast cancer screening: Is breast-level analysis enough? European Radiology. 2025:1-14.
https://doi.org/10.1007/s00330-025-11733-8
PMid:40563050  
 
31. Mitsala A, Tsalikidis C, Pitiakoudis M, Simopoulos C, Tsaroucha AK. Artificial intelligence in colorectal cancer screening, diagnosis and treatment. A new era. Current Oncology. 2021;28(3):1581-607.
https://doi.org/10.3390/curroncol28030149
PMid:33922402 PMCid:PMC8161764  
 
32. Wang K-S, Yu G, Xu C, Meng X-H, Zhou J, Zheng C, et al. Accurate diagnosis of colorectal cancer based on histopathology images using artificial intelligence. BMC medicine. 2021;19(1):76.
https://doi.org/10.1186/s12916-021-01942-5
PMid:33752648 PMCid:PMC7986569  
 
33. McCaffrey C, Jahangir C, Murphy C, Burke C, Gallagher WM, Rahman A. Artificial intelligence in digital histopathology for predicting patient prognosis and treatment efficacy in breast cancer. Expert review of molecular diagnostics. 2024;24(5):363-77.
https://doi.org/10.1080/14737159.2024.2346545
PMid:38655907  
 
34. Soliman A, Li Z, Parwani AV. Artificial intelligence's impact on breast cancer pathology: a literature review. Diagnostic pathology. 2024;19(1):38.
https://doi.org/10.1186/s13000-024-01453-w
PMid:38388367 PMCid:PMC10882736  
 
35. Faa G, Coghe F, Pretta A, Castagnola M, Van Eyken P, Saba L, et al. Artificial intelligence models for the detection of microsatellite instability from whole-slide imaging of colorectal cancer. Diagnostics. 2024;14(15):1605.
https://doi.org/10.3390/diagnostics14151605
PMid:39125481 PMCid:PMC11311951  
 
36. Agarwal S, Yadav AS, Dinesh V, Vatsav KSS, Prakash KSS, Jaiswal S. By artificial intelligence algorithms and machine learning models to diagnosis cancer. Materials Today: Proceedings. 2023;80:2969-75.
https://doi.org/10.1016/j.matpr.2021.07.088  
 
37. Silva HECd, Santos GNM, Leite AF, Mesquita CRM, Figueiredo PTdS, Stefani CM, et al. The use of artificial intelligence tools in cancer detection compared to the traditional diagnostic imaging methods: An overview of the systematic reviews. Plos one. 2023;18(10):e0292063.
https://doi.org/10.1371/journal.pone.0292063
PMid:37796946 PMCid:PMC10553229  
 
38. Pinto-Coelho L. How artificial intelligence is shaping medical imaging technology: a survey of innovations and applications. Bioengineering. 2023;10(12):1435.
https://doi.org/10.3390/bioengineering10121435
PMid:38136026 PMCid:PMC10740686  
 
39. Martinez-Ledesma E, Verhaak RG, Treviño V. Identification of a multi-cancer gene expression biomarker for cancer clinical outcomes using a network-based algorithm. Scientific reports. 2015;5(1):11966.
https://doi.org/10.1038/srep11966
PMid:26202601 PMCid:PMC5378879  
 
40. Park Y, Heider D, Hauschild A-C. Integrative analysis of next-generation sequencing for next-generation cancer research toward artificial intelligence. Cancers. 2021;13(13):3148.
https://doi.org/10.3390/cancers13133148
PMid:34202427 PMCid:PMC8269018  
 
41. Quazi S. Artificial intelligence and machine learning in precision and genomic medicine. Medical Oncology. 2022;39(8):120.
https://doi.org/10.1007/s12032-022-01711-1
PMid:35704152 PMCid:PMC9198206  
 
42. Thaker NG, Dicker AP, Loaiza-Bonilla A, Wallace A, Kolman D, Godshalk Ruggles A, et al. The role of artificial intelligence in early cancer detection: Exploring early clinical applications. AI in Precision Oncology. 2024;1(2):91-105.
https://doi.org/10.1089/aipo.2024.0003

 
 
43. Tiwari A, Mishra S, Kuo T-R. Current AI technologies in cancer diagnostics and treatment. Molecular Cancer. 2025;24(1):159.
https://doi.org/10.1186/s12943-025-02369-9
PMid:40457408 PMCid:PMC12128506  
 
44. Phillips M, Marsden H, Jaffe W, Matin RN, Wali GN, Greenhalgh J, et al. Assessment of accuracy of an artificial intelligence algorithm to detect melanoma in images of skin lesions. JAMA network open. 2019;2(10):e1913436.
https://doi.org/10.1001/jamanetworkopen.2019.13436
PMid:31617929 PMCid:PMC6806667  
 
45. Jones O, Matin R, Van der Schaar M, Bhayankaram KP, Ranmuthu C, Islam M, et al. Artificial intelligence and machine learning algorithms for early detection of skin cancer in community and primary care settings: a systematic review. The Lancet Digital Health. 2022;4(6):e466-e76.
https://doi.org/10.1016/S2589-7500(22)00023-1
PMid:35623799  
 
46. Patel RH, Foltz EA, Witkowski A, Ludzik J. Analysis of artificial intelligence-based approaches applied to non-invasive imaging for early detection of melanoma: a systematic review. Cancers. 2023;15(19):4694.
https://doi.org/10.3390/cancers15194694
PMid:37835388 PMCid:PMC10571810  
 
47. Hunter B, Hindocha S, Lee RW. The role of artificial intelligence in early cancer diagnosis. Cancers. 2022;14(6):1524.
https://doi.org/10.3390/cancers14061524
PMid:35326674 PMCid:PMC8946688  
 
48. Naseri H, Safaei AA. Diagnosis and prognosis of melanoma from dermoscopy images using machine learning and deep learning: a systematic literature review. BMC cancer. 2025;25(1):75.
https://doi.org/10.1186/s12885-024-13423-y
PMid:39806282 PMCid:PMC11727731  
 
49. Tran KA, Kondrashova O, Bradley A, Williams ED, Pearson JV, Waddell N. Deep learning in cancer diagnosis, prognosis and treatment selection. Genome medicine. 2021;13(1):152.
https://doi.org/10.1186/s13073-021-00968-x
PMid:34579788 PMCid:PMC8477474  
 
50. Hussain D, Al-Masni MA, Aslam M, Sadeghi-Niaraki A, Hussain J, Gu YH, et al. Revolutionizing tumor detection and classification in multimodality imaging based on deep learning approaches: Methods, applications and limitations. Journal of X-Ray Science and Technology. 2024;32(4):857-911.
https://doi.org/10.3233/XST-230429
PMid:38701131  
 
51. Azer SA. Deep learning with convolutional neural networks for identification of liver masses and hepatocellular carcinoma: A systematic review. World journal of gastrointestinal oncology. 2019;11(12):1218.
https://doi.org/10.4251/wjgo.v11.i12.1218
PMid:31908726 PMCid:PMC6937442  
 
52. Jiang X, Hu Z, Wang S, Zhang Y. Deep learning for medical image-based cancer diagnosis. Cancers. 2023;15(14):3608.
https://doi.org/10.3390/cancers15143608
PMid:37509272 PMCid:PMC10377683  
 
53. Kumar RR, Priyadarshi R. Denoising and segmentation in medical image analysis: A comprehensive review on machine learning and deep learning approaches. Multimedia Tools and Applications. 2024:1-59.
https://doi.org/10.1007/s11042-024-19313-6  
 
54. Li X, Zhang L, Yang J, Teng F. Role of artificial intelligence in medical image analysis: A review of current trends and future directions. Journal of Medical and Biological Engineering. 2024;44(2):231-43.
https://doi.org/10.1007/s40846-024-00863-x  
 
55. ŞAHiN E, Arslan NN, Özdemir D. Unlocking the black box: an in-depth review on interpretability, explainability, and reliability in deep learning. Neural Computing and Applications. 2025;37(2):859-965.
https://doi.org/10.1007/s00521-024-10437-2  
 
56. Hassija V, Chamola V, Mahapatra A, Singal A, Goel D, Huang K, et al. Interpreting black-box models: a review on explainable artificial intelligence. Cognitive Computation. 2024;16(1):45-74.
https://doi.org/10.1007/s12559-023-10179-8  
 
57. Das A, Rad P. Opportunities and challenges in explainable artificial intelligence (xai): A survey. arXiv preprint arXiv:200611371. 2020.  
 
58. Rawal A, McCoy J, Rawat DB, Sadler BM, Amant RS. Recent advances in trustworthy explainable artificial intelligence: Status, challenges, and perspectives. IEEE Transactions on Artificial Intelligence. 2021;3(6):852-66.
https://doi.org/10.1109/TAI.2021.3133846  
 
59. Adadi A, Berrada M. Peeking inside the black-box: a survey on explainable artificial intelligence (XAI). IEEE access. 2018;6:52138-60.
https://doi.org/10.1109/ACCESS.2018.2870052  
 
60. Huang D, Li Z, Jiang T, Yang C, Li N. Artificial intelligence in lung cancer: current applications, future perspectives, and challenges. Frontiers in Oncology. 2024;14:1486310.
https://doi.org/10.3389/fonc.2024.1486310
PMid:39763611 PMCid:PMC11700796  
 
61. Sandbank J, Bataillon G, Nudelman A, Krasnitsky I, Mikulinsky R, Bien L, et al. Validation and real-world clinical application of an artificial intelligence algorithm for breast cancer detection in biopsies. NPJ breast cancer. 2022;8(1):129.
https://doi.org/10.1038/s41523-022-00496-w
PMid:36473870 PMCid:PMC9723672  
 
62. Zhang B, Shi H, Wang H. Machine learning and AI in cancer prognosis, prediction, and treatment selection: a critical approach. Journal of multidisciplinary healthcare. 2023:1779-91.
https://doi.org/10.2147/JMDH.S410301
PMid:37398894 PMCid:PMC10312208  
 
63. Sumartono E, Harliyanto R, Situmeang SMT, Siagian DS, Septaria E. The legal implications of data privacy laws, cybersecurity regulations, and ai ethics in a digital society. The Journal of Academic Science. 2024;1(2):103-10.
https://doi.org/10.59613/29qypw51  
 
64. Stahl BC, Wright D. Ethics and privacy in AI and big data: Implementing responsible research and innovation. IEEE Security & Privacy. 2018;16(3):26-33.
https://doi.org/10.1109/MSP.2018.2701164  
 
65. Dlamini Z, Francies FZ, Hull R, Marima R. Artificial intelligence (AI) and big data in cancer and precision oncology. Computational and structural biotechnology journal. 2020;18:2300-11.
https://doi.org/10.1016/j.csbj.2020.08.019
PMid:32994889 PMCid:PMC7490765  
 
66. Williamson SM, Prybutok V. Balancing privacy and progress: a review of privacy challenges, systemic oversight, and patient perceptions in AI-driven healthcare. Applied Sciences. 2024;14(2):675.
https://doi.org/10.3390/app14020675  
 
67. Shen J, Zhang CJ, Jiang B, Chen J, Song J, Liu Z, et al. Artificial intelligence versus clinicians in disease diagnosis: systematic review. JMIR medical informatics. 2019;7(3):e10010.
https://doi.org/10.2196/10010
PMid:31420959 PMCid:PMC6716335  
 
68. Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nature medicine. 2019;25(1):44-56.
https://doi.org/10.1038/s41591-018-0300-7
PMid:30617339  
 
69. Liu X, Faes L, Kale AU, Wagner SK, Fu DJ, Bruynseels A, et al. A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: a systematic review and meta-analysis. The lancet digital health. 2019;1(6):e271-e97.
https://doi.org/10.1016/S2589-7500(19)30123-2
PMid:33323251  
 
70. Kourou K, Exarchos KP, Papaloukas C, Sakaloglou P, Exarchos T, Fotiadis DI. Applied machine learning in cancer research: A systematic review for patient diagnosis, classification and prognosis. Computational and structural biotechnology journal. 2021;19:5546-55.
https://doi.org/10.1016/j.csbj.2021.10.006
PMid:34712399 PMCid:PMC8523813  
 
71. Pallumeera M, Giang JC, Singh R, Pracha NS, Makary MS. Evolving and Novel Applications of Artificial Intelligence in Cancer Imaging. Cancers. 2025;17(9):1510.
https://doi.org/10.3390/cancers17091510
PMid:40361437 PMCid:PMC12070983  
 
72. Shahid MS, Imran A. Breast cancer detection using deep learning techniques: challenges and future directions. Multimedia Tools and Applications. 2025;84(6):3257-304.
https://doi.org/10.1007/s11042-025-20606-7  
 
73. Rigby E, Vidya R, Shaaban AM. Use of digital pathology and artificial intelligence (AI) in breast cancer diagnosis and management: Opportunities and challenges. Diagnostic Histopathology. 2025.
https://doi.org/10.1016/j.mpdhp.2024.12.005  
 
74. Zhang DY, Venkat A, Khasawneh H, Sali R, Zhang V, Pei Z. Implementation of digital pathology and artificial intelligence in routine pathology practice. Laboratory Investigation. 2024;104(9):102111.
https://doi.org/10.1016/j.labinv.2024.102111
PMid:39053633  
 
75. Gao Y, Wen P, Liu Y, Sun Y, Qian H, Zhang X, et al. Application of artificial intelligence in the diagnosis of malignant digestive tract tumors: focusing on opportunities and challenges in endoscopy and pathology. Journal of Translational Medicine. 2025;23(1):412.
https://doi.org/10.1186/s12967-025-06428-z
PMid:40205603 PMCid:PMC11983949  
 
76. Srivastav AK, Mishra MK, Lillard Jr JW, Singh R. Transforming pharmacogenomics and CRISPR gene editing with the power of artificial intelligence for precision medicine. Pharmaceutics. 2025;17(5):555.
https://doi.org/10.3390/pharmaceutics17050555
PMid:40430848 PMCid:PMC12114816  
 
77. Koh HYK, Lam UTF, Ban KH-K, Chen ES. Machine learning optimized DriverDetect software for high precision prediction of deleterious mutations in human cancers. Scientific Reports. 2024;14(1):22618.
https://doi.org/10.1038/s41598-024-71422-2
PMid:39349509 PMCid:PMC11442673  
 
78. Pillay TS, Khan AI, Yenice S. Artificial intelligence (AI) in point-of-care testing. Clinica Chimica Acta. 2025;574:120341.
https://doi.org/10.1016/j.cca.2025.120341
PMid:40324611  
 
79. Viswanathan VS, Parmar V, Madabhushi A. Towards equitable AI in oncology. Nature Reviews Clinical Oncology. 2024;21(8):628-37.
https://doi.org/10.1038/s41571-024-00909-8
PMid:38849530  
 
80. Kalsi S, French H, Chhaya S, Madani H, Mir R, Anosova A, et al. The evolving role of artificial intelligence in radiotherapy treatment planning-A literature review. Clinical Oncology. 2024;36(10):596-605.
https://doi.org/10.1016/j.clon.2024.06.005
PMid:38981781  
 
81. Sheng Y, Zhang J, Ge Y, Li X, Wang W, Stephens H, et al. Artificial intelligence applications in intensity modulated radiation treatment planning: an overview. Quantitative Imaging in Medicine and Surgery. 2021;11(12):4859.
https://doi.org/10.21037/qims-21-208
PMid:34888195 PMCid:PMC8611458  
 
82. Dona Lemus OM, Cao M, Cai B, Cummings M, Zheng D. Adaptive radiotherapy: next-generation radiotherapy. Cancers. 2024;16(6):1206.
https://doi.org/10.3390/cancers16061206
PMid:38539540 PMCid:PMC10968833  
 
83. Jeong C, Goh Y, Kwak J. Challenges and opportunities to integrate artificial intelligence in radiation oncology: a narrative review. The Ewha Medical Journal. 2024;47(4).
https://doi.org/10.12771/emj.2024.e49
PMid:40704006 PMCid:PMC12093566  
 
84. Conroy L, Winter J, Khalifa A, Tsui G, Berlin A, Purdie T. Artificial intelligence for radiation treatment planning: Bridging gaps from retrospective promise to clinical reality. Clinical Oncology. 2025;37:103630.
https://doi.org/10.1016/j.clon.2024.08.005
PMid:39531894  
 
85. Abejas AG, Santos DG, Costa FL, Botejara AC, Mota-Filipe H, Vergés ÀS. Ethical Challenges and Opportunities of AI in End-of-Life Palliative Care: Integrative Review. Interactive Journal of Medical Research. 2025;14(1):e73517.
https://doi.org/10.2196/73517
PMid:40302210 PMCid:PMC12120364  
 
86. Riaz IB, Khan MA, Osterman TJ. Artificial intelligence across the cancer care continuum. Cancer. 2025;131(16):e70050.
https://doi.org/10.1002/cncr.70050
PMid:40810209 PMCid:PMC12351523  
 
87. Saber AF, Ahmed SK, Hussein S, Qurbani K. Artificial intelligence-assisted nursing interventions in psychiatry for oral cancer patients: a concise narrative review. Oral Oncology Reports. 2024;10:100343.
https://doi.org/10.1016/j.oor.2024.100343  
 
88. Razavi J, Dhafar HO, BaHammam AS. Transforming health care with artificial intelligence: Regulations, challenges, and future directions. Saudi Journal for Health Sciences. 2025;14(1):11-22.
https://doi.org/10.4103/sjhs.sjhs_26_25  
 
89. Rabbani SA, El-Tanani M, Sharma S, Rabbani SS, El-Tanani Y, Kumar R, et al. Generative Artificial Intelligence in Healthcare: Applications, Implementation Challenges, and Future Directions. BioMedInformatics. 2025;5(3):37
https://doi.org/10.3390/biomedinformatics5030037