Validation of the MuLBSTA Scale in Predicting the Mortality Risk of SARS-CoV-2 in the Iranian Population; A pilot study

Document Type : Original Article

Authors

1 Faculty member of the Nursing Department, School of Nursing and Midwifery, Islamic Azad University, Birjand, Iran

2 Mashhad University of Medical Sciences, Mashhad, Iran

3 Department of Biostatistics, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran

4 Department of Nursing, School of Nursing and Midwifery, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran

5 Department of Cardiac Surgery, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran

6 Department of Extra-Corporeal Circulation (ECC), Razavi Hospital, Mashhad, Iran ‎

Abstract

Background: MuLBSTA is a scale designed for easy clinical assessment of the mortality risk of viral pneumonia patients.
 
Objectives: The overall purpose of conducting this research is to investigate the effectiveness of MuLBSTA in estimating the mortality risk of COVID-19 patients.
 
Methods: A cross-sectional study was performed on 99 COVID-19 patients from December 2020 to February 2021. The MuLBSTA scores of patients were calculated, and their survival and risk rates were estimated by the Kaplan-Meier method. The ROC diagram was used for the logistic model assessment to determine the best mortality prediction cut-off point. Data were analyzed in SPSS version 21 at the 0.05 significance level.
 
Results: Of the 99 monitored patients, 69 (69.69%) recovered, and 30 (30.31%) died during the study period. The mean MuLBSTA scores of patients who recovered and died were 10.51±3.99 and 16.53±3.02, respectively. A statistically significant positive relationship was found between MuLBSTA scores and mortality (p<0.001). The area under the ROC curve (AUC) of MuLBSTA in predicting mortality during hospitalization was calculated to be 0.88 (95%CI=0.82-0.95, SE=1.55).
 
Conclusion: MuLBSTA scores are highly correlated with the severity of COVID-19. Therefore, MuLBSTA can serve as a tool for rapid situation assessment and swift decision-making about the treatment approach and the allocation of hospital resources to COVID-19 patients.
 

Keywords


Open Access Policy: This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/

1. Jin H, Lu L, Liu J, Cui M. Complex emergencies of COVID-19: management and experience in Zhuhai, China. Int J Antimicrob Agents. 2020;55(5):105961. doi: 10.1016/j.ijantimicag.2020.105961. [PubMed: 32234464].
https://doi.org/10.1016/j.ijantimicag.2020.105961
PMid:32234464 PMCid:PMC7270772
 
2. Ganji A, Gh M, Khaki M, Ghazavi A. A Review on Immunopathogenesis, Molecular Biology and Clinical Aspects of the 2019 Novel Coronavirus (COVID-19). J Arak Uni Med Sci. 2020;23(1):8-21. doi: 10.32598/JAMS.23.1.51.5.
https://doi.org/10.32598/JAMS.23.1.51.5
 
3. Ji D, Zhang D, Xu J, Chen Z, Yang T, Zhao P, et al. Prediction for Progression Risk in Patients With COVID-19 Pneumonia: The CALL Score. Clin Infect Dis. 2020;71(6):1393-1399. doi: 10.1093/cid/ciaa414. [PubMed: 32271369].
https://doi.org/10.1093/cid/ciaa414
PMid:32271369 PMCid:PMC7184473
 
4. Sohrabi C, Alsafi Z, O'Neill N, Khan M, Kerwan A, Al-Jabir A, et al. World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19). Int J Surg. 2020;76:71-76. doi: 10.1016/j.ijsu.2020.02.034. [PubMed: 32112977].
https://doi.org/10.1016/j.ijsu.2020.02.034
PMid:32112977 PMCid:PMC7105032
 
5. Ali Z, Goneppanavar U, Dongare PA, Garg R, Kannan S, Harsoor SS, et al. Development of a preoperative Early Warning Scoring System to identify highly suspect COVID-19 patients. J Anaesthesiol Clin Pharmacol. 2020;36(Suppl 1):S62-S74. doi: 10.4103/joacp.JOACP_274_20. [PubMed: 33100649].
https://doi.org/10.4103/joacp.JOACP_274_20
PMid:33100649 PMCid:PMC7573990
 
6. Zu ZY, Jiang MD, Xu PP, Chen W, Ni QQ, Lu GM, et al. Coronavirus Disease 2019 (COVID-19): A Perspective from China. Radiology. 2020;296(2):E15-E25. doi: 10.1148/radiol.2020200490. [PubMed: 32083985].
https://doi.org/10.1148/radiol.2020200490
PMid:32083985 PMCid:PMC7233368
 
7. Inciardi RM, Lupi L, Zaccone G, Italia L, Raffo M, Tomasoni D, et al. Cardiac Involvement in a Patient With Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. 2020;5(7):819-824. doi: 10.1001/jamacardio.2020.1096. [PubMed: 32219357].
https://doi.org/10.1001/jamacardio.2020.1096
PMid:32219357 PMCid:PMC7364333
 
8. Lai CC, Shih TP, Ko WC, Tang HJ, Hsueh PR. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. Int J Antimicrob Agents. 2020;55(3):105924. doi: 10.1016/j.ijantimicag.2020.105924. [PubMed: 32081636]
https://doi.org/10.1016/j.ijantimicag.2020.105924
PMid:32081636 PMCid:PMC7127800
 
9. e Conhecimento RdI. Coronavirus COVID-19 Global Cases by the Center for Systems Science and Engineering (CSSE) USA: world health organization; 2020 [cited 2020]. Available from: https://pesquisa.bvsalud.org/gim/resource/en/lis-47065?src=similardocs.
 
10. Hu Y, Sun J, Dai Z, Deng H, Li X, Huang Q, et al. Prevalence and severity of coronavirus disease 2019 (COVID-19): A systematic review and meta-analysis. J Clin Virol. 2020;127:104371. doi: 10.1016/j.jcv.2020.104371. [PubMed: 32315817]
https://doi.org/10.1016/j.jcv.2020.104371
PMid:32315817 PMCid:PMC7195434
 
11. Hendin A, La Rivière CG, Williscroft DM, O'Connor E, Hughes J, Fischer LM. End-of-life care in the emergency department for the patient imminently dying of a highly transmissible acute respiratory infection (such as COVID-19). CJEM. 2020;22(4):414-7. doi: 10.1017/cem.2020.352. [PubMed: 32213224].
https://doi.org/10.1017/cem.2020.352
PMid:32213224 PMCid:PMC7138612
 
12. Wu Z, McGoogan JM. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. JAMA. 2020;323(13):1239-1242. doi: 10.1001/jama.2020.2648. [PubMed: 32091533].
https://doi.org/10.1001/jama.2020.2648
PMid:32091533
 
13. Guo L, Wei D, Zhang X, Wu Y, Li Q, Zhou M, et al. Clinical Features Predicting Mortality Risk in Patients With Viral Pneumonia: The MuLBSTA Score. Front Microbiol. 2019;10:2752. doi: 10.3389/fmicb.2019.02752. [PubMed: 31849894].
https://doi.org/10.3389/fmicb.2019.02752
PMid:31849894 PMCid:PMC6901688
 
14. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA. 2020;323(11):1061-1069. doi: 10.1001/jama.2020.1585. [PubMed: 32031570].
https://doi.org/10.1001/jama.2020.1585
PMid:32031570 PMCid:PMC7042881
 
15. Ma B, Gong J, Yang Y, Yao X, Deng X, Chen X. Applicability of MuLBSTA scoring system as diagnostic and prognostic role in early warning of severe COVID-19. Microb Pathog. 2021;150:104706. doi: 10.1016/j.micpath.2020.104706. [PubMed: 33347962].
https://doi.org/10.1016/j.micpath.2020.104706
PMid:33347962 PMCid:PMC7758722
 
16. Guan W-j, Ni Z-y, Hu Y, Liang W-h, Ou C-q, He J-x, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382(18):1708-1720. doi: 10.1056/NEJMoa2002032. [PubMed: 32109013].
https://doi.org/10.1056/NEJMoa2002032
PMid:32109013 PMCid:PMC7092819
 
17. Xu X-W, Wu X-X, Jiang X-G, Xu K-J, Ying L-J, Ma C-L, et al. Clinical findings in a group of patients infected with the 2019 novel coronavirus (SARS-Cov-2) outside of Wuhan, China: retrospective case series. BMJ. 2020;368:m606. doi: 10.1136/bmj.m606. [PubMed: 32075786].
https://doi.org/10.1136/bmj.m606
PMid:32075786 PMCid:PMC7224340
 
18. Cheng P, Wu H, Yang J, Song X, Xu M, Li B, et al. Pneumonia scoring systems for severe COVID-19: which one is better. Virol J. 2021;18(1):33. doi: 10.1186/s12985-021-01502-6. [PubMed: 33568204].
https://doi.org/10.1186/s12985-021-01502-6
PMid:33568204 PMCid:PMC7874994
 
19. Nasrollahzadeh Sabet M, Khanalipour M, Gholami M, Sarli A, Rahimikhorrami A, Esmaeilzadeh E. Investigating the Presentation and Mortality Rate in Covid-19 Patients With Underlying Diseases. J Arak Uni Med Sci. 2020;23 (5):740-749. doi: 10.32598/JAMS.23.COV.5797.1.
https://doi.org/10.32598/JAMS.23.COV.5797.1
 
20. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020 15;395(10223):507-513. doi: 10.1016/S0140-6736(20)30211-7. [PunMed: 32007143].
https://doi.org/10.1016/S0140-6736(20)30211-7
PMid:32007143
 
21. Iijima Y, Okamoto T, Shirai T, Mitsumura T, Sakakibara R, Honda T, et al. MuLBSTA score is a useful tool for predicting COVID-19 disease behavior. J Infect Chemother. 2021;27(2):284-290. doi: 10.1016/j.jiac.2020.10.013. [PunMed: 33129694]
https://doi.org/10.1016/j.jiac.2020.10.013
PMid:33129694 PMCid:PMC7552979