Development of an Educational Model of Emotional Regulation Based on Gross Emotional Regulation (ERT), Emotional Schema Therapy (EST), and Emotional Transformation Therapy (ETT) and its Effectiveness in Internet Addiction with Different Roles of Brain/ Behavioral Systems

Document Type : Original Article

Authors

1 Department of Psychology, Karaj Branch, Islamic Azad University, Karaj, Iran

2 Clinical Cares and Health Promotion Research Center, Karaj Branch, Islamic Azad University, Karaj, Iran

3 Clinical Psychology Department, Faculty of Psychology and Education, Allameh Tabataba'i University, Tehran, Iran

Abstract

Background: Several studies have linked emotion regulation difficulties to Internet addiction.
 
Objectives: The present study aimed to develop an educational model of emotional regulation based on Gross emotional regulation (ERT), Emotional Schema Therapy (EST), and Emotional Transformation Therapy (ETT) and assess its effectiveness in internet addiction with different roles of brain/behavioral systems.
 
Methods: The current study employed the pretest-posttest control group quasi-experimental design with a three-month follow-up. The target population for this study consisted of all secondary school students in Islamshahr, Iran, who used the Internet in the second half of 2021. The sample size consisted of 100 subjects who were randomly selected by purposive sampling and placed in three experimental and control groups (Activation System (BAS), Inhibition System (BIS), and Fight-Fight-Freeze System (FFFS) groups). The data collection instruments included a revised questionnaire from Jackson's (2009), Reinforcement Sensitivity Theory (r-RST), and Young's Internet Addiction Test (2007). Univariate covariance analysis was performed using SPSS software (version 26).
 
Results: As evidenced by the obtained results, emotion regulation training reduced the Internet addiction score in the experimental group (P=0.001; F=71.262). In addition, the effect size of emotional regulation training on internet addiction was 0.811%. In addition, by controlling the pretest score, emotion regulation training reduced the internet addiction score in the experimental group (P=0.001; F=71.141).
 
Conclusion: Emotion regulation training for students leads to increased awareness of emotional understanding and acceptance, identification of anxiety-provoking situations, change of emotional response, and less tendency for Internet addiction.
 

Keywords


Open Access Policy: This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/

1. Kurniasanti KS, Assandi P, Ismail RI, Nasrun MWS, Wiguna T. Internet addiction: a new addiction? . Med. J. Indones. 2019;28(1):82-91. doi:10.13181/mji.v28i1.2752.
https://doi.org/10.13181/mji.v28i1.2752
 
2. Di Z, Gong X, Shi J, Ahmed HO, Nandi AK. Internet addiction disorder detection of Chinese college students using several personality questionnaire data and support vector machine. Addict Behav Rep. 2019;10:100200. doi:10.1016/j.abrep.2019.100200. [PubMed: 31508477].
https://doi.org/10.1016/j.abrep.2019.100200
PMid:31508477 PMCid:PMC6726843
 
3. Bashir R, Kazmi F, Khan S, Shams S. A quantitative correlational study of parental neglect, conduct problems and social media addiction among adolescents. PalArch's J. Archaeol. Egypt/ Egyptol. 2021;18(7):2600-9.
 
4. Sindermann C, Sariyska R, Lachmann B, Brand M, Montag C. Associations between the dark triad of personality and unspecified/specific forms of Internet-use disorder. J Behav Addict. 2018;7(4):985-92. doi:10.1556/2006.7.2018.114. [PubMed: 29302225].
https://doi.org/10.1556/2006.7.2018.114
PMid:30541336 PMCid:PMC6376366
 
5. Piri Z, Amiri Majd M, Bazzazian S, Ghamari M. The mediating role of coping strategies in the relationship of difficulties in emotion regulation with internet addiction among college students. Intern. Med. 2019;26(1):38-53. doi: 10.32598/hms.26.1.3108
https://doi.org/10.32598/hms.26.1.3108
 
6. Eynypour J, Bayat M, Pashang S. Prediction of University Students' Internet Addiction Based on Brain-Behavioral Systems. J Public Health Res. 2021;19(1):85-98.
 
7. Potenza MN. Clinical neuropsychiatric considerations regarding nonsubstance or behavioral addictions. Dialogues Clin Neurosci. doi: 10.31887/DCNS.2017.19.3/mpotenza. [PubMed: 29302225].
https://doi.org/10.31887/DCNS.2017.19.3/mpotenza
PMid:29302225 PMCid:PMC5741111
 
8. Yeh Y-C, Chen I-H, Ahorsu DK, Ko N-Y, Chen K-L, Li P-C, et al. Measurement invariance of the drivers of COVID-19 vaccination acceptance scale: comparison between Taiwanese and Mainland Chinese-speaking populations. Vaccines. 2021;9(3):297. doi:10.3390/vaccines9030297. [PubMed: 33810036].
https://doi.org/10.3390/vaccines9030297
PMid:33810036 PMCid:PMC8004810
 
9. Trumello C, Babore A, Candelori C, Morelli M, Bianchi D. Relationship with parents, emotion regulation, and callous-unemotional traits in adolescents' Internet addiction. Biomed Res Int. 2018;2018:7914261. doi: 10.1155/2018/7914261. [PubMed: 29951544].
https://doi.org/10.1155/2018/7914261
PMid:29951544 PMCid:PMC5989287
 
10. Lansing AE, Plante WY, Golshan S, Fennema-Notestine C, Thuret S. Emotion regulation mediates the relationship between verbal learning and internalizing, trauma-related and externalizing symptoms among early-onset, persistently delinquent adolescents. Learn. Individ. Differ. 2019;70:201-15. doi: 10.1016/j.lindif.2017.01.014 [PubMed: 31130798].
https://doi.org/10.1016/j.lindif.2017.01.014
PMid:31130798 PMCid:PMC6532995
 
11. Liang L, Zhu M, Dai J, Li M, Zheng Y. The mediating roles of emotional regulation on negative emotion and internet addiction among Chinese adolescents from a development perspective. Front. Psychiatry. 2021;12:608317. doi:10.3389/fpsyt.2021.608317. [PubMed: 33897485].
https://doi.org/10.3389/fpsyt.2021.608317
PMid:33897485 PMCid:PMC8062778
 
12. Gioia F, Rega V, Boursier V. Problematic internet use and emotional dysregulation among young people: A literature review. Clin Neuropsychiatry. 2021;18(1):41. doi: 10.36131/cnfioritieditore20210104. [PubMed: 34909019].
 
13. Yan X, Gao W, Yang J, Yuan J. Emotion regulation choice in internet addiction: less reappraisal, lower frontal alpha asymmetry. Clin EEG Neurosci. 2022;53(4):278-86. doi:10.1177/155005942110564 [PubMed:34894803].
https://doi.org/10.1177/15500594211056433
PMid:34894803
 
14. Martin LN, Delgado MR. The influence of emotion regulation on decision-making under risk. J. Cogn. Neurosci. 2011;23(9):2569-81. doi: 10.1162/jocn.2011.21618. [PubMed: 21254801].
https://doi.org/10.1162/jocn.2011.21618
PMid:21254801 PMCid:PMC3164848
 
15. Desrosiers A, Vine V, Curtiss J, Klemanski DH. Observing nonreactively: A conditional process model linking mindfulness facets, cognitive emotion regulation strategies, and depression and anxiety symptoms. J. Affect. Disord. 2014;165:31-7. doi:10.1016/j.jad.2014.04.024. [PubMed:24882174].
https://doi.org/10.1016/j.jad.2014.04.024
PMid:24882174
 
16. Yildiz MA. Emotion regulation strategies as predictors of internet addiction and smartphone addiction in adolescents. J. Educ. Psychol. 2017;7(1).
 
17. Tsai J-K, Lu W-H, Hsiao RC, Hu H-F, Yen C-F. Relationship between difficulty in emotion regulation and internet addiction in college students: A one-year prospective study. IJERPH. 2020;17(13):4766. doi:10.3390/ijerph17134766. [PubMed: 32630720].
https://doi.org/10.3390/ijerph17134766
PMid:32630720 PMCid:PMC7369922
 
18. Patil AU, Madathil D, Huang CM. Age‐related and individual variations in altered prefrontal and cerebellar connectivity associated with the tendency of developing internet addiction. Hum. Brain Mapp. 2021;42(14):4525-37. doi: 10.1002/hbm.25562. [PubMed: 34170056].
https://doi.org/10.1002/hbm.25562
PMid:34170056 PMCid:PMC8410527
 
19. Kuss D, Griffiths M. Internet addiction in psychotherapy: Springer; 2014.
https://doi.org/10.1057/9781137465078
 
20. Nie J, Zhang W, Chen J, Li W. Impaired inhibition and working memory in response to internet-related words among adolescents with internet addiction: A comparison with attention-deficit/hyperactivity disorder. Psychiatry Res. 2016;236:28-34. doi: 10.1016/j.psychres.2016.01.004. [PubMed: 26778632].
https://doi.org/10.1016/j.psychres.2016.01.004
PMid:26778632
 
21. Cudo A, Zabielska-Mendyk E. Cognitive functions in Internet addiction-a review. Psychiatr Pol. 2019;53(1):61-79. doi: 10.12740/PP/82194. [PubMed: 31008465].
https://doi.org/10.12740/PP/82194
PMid:31008465
 
22. Cao F, Su L. Internet addiction among Chinese adolescents: prevalence and psychological features. Child Care Health Dev . 2007;33(3):275-81. doi: 10.1111/j.1365-2214.2006.00715.x. [PubMed: 17439441].
https://doi.org/10.1111/j.1365-2214.2006.00715.x
PMid:17439441
 
23. Dong G, Zhou H. Is impulse-control ability impaired in people with internet addiction disorder: electrophysiological evidence from ERP studies.
 
Int. J. Psychophysiol.2010;3(77):334-5. doi: 10.1016/j.neulet.2010.09.002. [PubMed: 20833229].
https://doi.org/10.1016/j.neulet.2010.09.002
PMid:20833229
 
24. Hasani A. The Relationship between Brain Behavioral Systems and Internet Addiction with Mediating Role of Loneliness and Cognitive Emotion Regulation Strategies. Soc. Cogn. 2016;5(2):26-51. doi: 20.1001.1.23223782.1395.5.2.2.4
 
25. Jafari R, Ahmadi E. The Relationship between Behavioral and Metacognitive Brain Systems Sensitivity and Emotion Regulation in Heart Failure Patients. Neurosci. J. Shefaye Khatam. 2021;9(4):31-40. ‎ doi: 10.52547/shefa.9.4.31.
https://doi.org/10.52547/shefa.9.4.31
 
26. Jackson CJ. Jackson-5 scales of revised Reinforcement Sensitivity Theory (r-RST) and their application to dysfunctional real world outcomes. J Res Pers . 2009;43(4):556-69. doi:10.1016/j.jrp.2009.02.007.
https://doi.org/10.1016/j.jrp.2009.02.007
 
27. Fayazi M, Hasani J, Mohammadkhani S. The Role of Brain-Behavioral Systems in Internet Addiction: With Regard to Revised Reinforcement Sensitivity Theory. JIUMS. 2016 ;24(2):119-29.
https://doi.org/10.18869/acadpub.sjimu.24.2.119
 
28. Young KS. Internet addiction: The emergence of a new clinical disorder. Cyberpsychol Behav. 2009;1(3). doi: 10.1089/cpb.1998.1.237
https://doi.org/10.1089/cpb.1998.1.237
 
29. Alavi S. Psychometric properties of Young internet addiction test. IJBS. 2010;4(3):183-9.
 
30. Liu RT, Burke TA, Abramson LY, Alloy LB. The behavioral approach system (BAS) model of vulnerability to bipolar disorder: Evidence of a continuum in BAS sensitivity across adolescence. J. Abnorm. Child Psychol. 2018;46:1333-49. doi: 10.1007/s10802-017-0363-9. [PubMed: 29101589].
https://doi.org/10.1007/s10802-017-0363-9
PMid:29101589 PMCid:PMC5934343