Impact of Iranian Viola Odorata Extract on the Malignant Traits of Colorectal Cancer Cells

Document Type : Original Article

Authors

1 Department of Agricultural Biotechnology, Plant Branch, Sabzevar Branch, Islamic Azad University, Sabzevar, Iran

2 Department of Cellular Biotechnology at Cell Science Research Center, Royan Institute of Biotechnology, ACECR, Isfahan, Iran

3 Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran

4 Department of Agronomy and Plant Breeding, Sabzevar Branch, Islamic Azad University, Sabzevar, Iran

5 Department of Cell and Molecular Biology, Semnan University, Semnan, Iran

6 Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran

7 Department of Biology, Hakim sabzevari University, Sabzevar, Iran

8 Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran

Abstract

Background: Cancer, particularly colorectal cancer, is a growing global public health issue with a significant impact on individuals aged fifty and older. Viola odorata, a traditional herbal remedy, has been investigated for its potential anti-cancer effects, particularly in inhibiting the metastasis of certain cancer cell types.
 
Objectives: This study aimed to evaluate and compare the effects of Viola odorata extract on the malignant characteristics of colorectal cancer cell lines HT-29 and HCT-116.
 
Methods: Samples of Viola odorata were collected from five different geographical locations in Iran. The chemical composition of the extracts was analyzed using Fourier transform infrared spectroscopy (FTIR), and the concentration of polyphenols and flavonoids was determined by high-performance liquid chromatography (HPLC). The hydro-alcoholic extract was then used to treat HT-29 and HCT-116 colorectal cancer cell lines. Apoptosis, migration, colony formation, and cell viability were assessed and compared.
 
Results: Treatment with Viola odorata extract induced apoptosis in both HT-29 and HCT-116 cell lines. The extract also significantly reduced cell migration and colony formation. Cell viability was markedly decreased, with HCT-116 cells showing greater sensitivity to the extract than HT-29 cells.
 
Conclusion: Viola odorata extract demonstrated anti-cancer activity against colorectal cancer cell lines, with a more pronounced effect in HCT-116 cells. These findings suggest that Viola odorata may be a promising therapeutic agent for targeting colorectal cancer cells, especially at higher concentrations, and its efficacy appears to be cell-dependent

Keywords


Acknowledgements: We would like to express our gratitude to our great colleague, Mr. Abbas Kiani Esfahani, for his technical assistance with flow cytometry.

 

Availability of data and materials: Raw data and materials are available upon request.

 

Conflicts of interests: No conflict of interest.

 

Consent for publication: Not applicable.

 

Ethics approval and consent to participate: T The permission to use cancer cell lines based on the standard protocols was obtained from the Ethics Committee of Royan Institute (ethics code: IR.ACECR.ROYAN.REC), The study was conducted in accordance with the ethical principles outlined in the Declaration of Helsinki.

 

Financial disclosure: No funding information.

 

Author contributions: All authors contributed equally to the research, writing, and revision of this manuscript.

 

Abbreviations: Bcl-2, B-cell lymphoma 2; CRC, Colorectal cancer; DMEM, Dulbecco’s modified Eagle’s medium; EDTA, Ethylene diamine tetra acetic acid; FBS, Fetal bovine serum; FTIR,  Fourier transform infrared spectroscopy; Gβδ, G beta-gamma complex; JAM-A, Junctional adhesion molecule-A; HPLC, High-performance liquid chromatography; IC50, 50% Inhibitory concentration; LMTAG, Low melting temperature agarose gel; MMP, Matrix metalloproteinases; NF-κB, Nuclear factor kappa-light-chain-enhancer of activated B cells; PARP, poly ADP ribose polymerase, p27KIP1, p27 cyclin-dependent kinase inhibitor 1; p21WAF1, p21 wild-type p53-activated fragment.

 

Open Access Policy: This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/

1. Network CGA. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487(1):330.
https://doi.org/10.1038/nature11252
PMid:22810696 PMCid:PMC3401966
 
2. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61(1):69-90.
https://doi.org/10.3322/caac.20107
PMid:21296855  
 
3. Vogelstein B, Fearon ER, Hamilton SR, Kern SE, Preisinger AC, Leppert M, Smits AM, Bos JL. Genetic alterations during colorectal-tumor development. N Engl J Med. 1988;319(1):525-32.
https://doi.org/10.1056/NEJM198809013190901
PMid:2841597  
 
4. Sideris M, Papagrigoriadis S. Molecular biomarkers and classification models in the evaluation of the prognosis of colorectal cancer. Anti-cancer Res. 2014;34(1):2061-8.  
 
5. Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin D, Forman D, Bray F. GLOBOCAN 2012 v1.0: Cancer incidence and mortality worldwide: IARC CancerBase 11. Int J Cancer. 2013.  
 
6. Johns LE, Houlston RS. A systematic review and meta-analysis of familial colorectal cancer risk. Am J Gastroenterol. 2001;96(1):2992-3003.
https://doi.org/10.1111/j.1572-0241.2001.04677.x
PMid:11693338  
 
7. Schultz DJ, Wickramasinghe NS, Ivanova MM, Isaacs SM, Dougherty SM, Imbert-Fernandez Y, Cunningham AR, Chen C, Klinge CM. Anacardic acid inhibits estrogen receptor α-DNA binding and reduces target gene transcription and breast cancer cell proliferation. Mol Cancer Ther. 2010;9(1):594-605.
https://doi.org/10.1158/1535-7163.MCT-09-0978
PMid:20197399 PMCid:PMC2837512  
 
8. Huxley RR, Ansary-Moghaddam A, Clifton P, Czernichow S, Parr CL, Woodward M. The impact of dietary and lifestyle risk factors on risk of colorectal cancer: a quantitative overview of the epidemiological evidence. Int J Cancer. 2009;125(1):171-80.
https://doi.org/10.1002/ijc.24343
PMid:19350627  
 
9. Watson AJ, Collins PD. Colon cancer: a civilization disorder. Dig Dis. 2011;29(1):222-8.
https://doi.org/10.1159/000323926
PMid:21734388  
 
10. Meyerhardt JA, Catalano PJ, Haller DG, Mayer RJ, Macdonald JS, Benson AB III, Fuchs CS. Impact of diabetes mellitus on outcomes in patients with colon cancer. J Clin Oncol. 2003;21(1):433-40.
https://doi.org/10.1200/JCO.2003.07.125
PMid:12560431  
 
11. Terzić J, Grivennikov S, Karin E, Karin M. Inflammation and colon cancer. Gastroenterology. 2010;138(1):2101-14. e5.
https://doi.org/10.1053/j.gastro.2010.01.058
PMid:20420949  
 
12. Arnold M, Sierra MS, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global patterns and trends in colorectal cancer incidence and mortality. Gut. 2017;66(1):683-91.
https://doi.org/10.1136/gutjnl-2015-310912
PMid:26818619  
 
13. Qudayr A, Kabel AM, AbdElmaaboud MA, Alghamdi WY, Alghorabi A. Colorectal cancer: new perspectives. J Cancer Res Treat. 2018;6(1):80-3.  
 
14. Erhatić R, Vukobratović M, Peremin Volf T, Židovec V. Morphological and chemical properties of selected sweet violet populations. J Cent Eur Agric. 2010;11(1):55-64.
https://doi.org/10.5513/JCEA01/11.1.803  
 
15. Koochek M, Pipelzadeh M, Mardani H. The effectiveness of Viola odorata in the prevention and treatment of formalin-induced lung damage in the rat. J Herbs Spices Med Plants. 2003;10(1):95-103.
https://doi.org/10.1300/J044v10n02_11  
 
16. Anca T, Philippe V, Ilioara O, Mircea T. Composition of essential oils of Viola tricolor and V. arvensis from Romania. Chem Nat Compd. 2009;45(1):91-2.
https://doi.org/10.1007/s10600-009-9244-y  
 
17. Siddiqi HS, Mehmood MH, Rehman NU, Gilani AH. Studies on the antihypertensive and antidyslipidemic activities of Viola odorata leaves extract. Lipids Health Dis. 2012;11(1):1-12.
https://doi.org/10.1186/1476-511X-11-6
PMid:22233644 PMCid:PMC3286389  
 
18. Gerlach SL, Rathinakumar R, Chakravarty G, Göransson U, Wimley WC, Darwin SP, Mondal D. Anti-cancer and chemosensitizing abilities of cycloviolacin O2 from Viola odorata and psyle cyclotides from Psychotria leptothyrsa. Pept Sci. 2010;94(1):617-25.
https://doi.org/10.1002/bip.21435
PMid:20564026  
 
19. Lindholm P, Göransson U, Johansson S, Claeson P, Gullbo J, Larsson R, Bohlin L, Backlund A. Cyclotides: A novel type of cytotoxic agents. Mol Cancer Ther. 2002;1(1):365-9.  
 
20. Yousefnia S, Naseri D, Seyed Forootan F, Tabatabaeian M, Moattar F, Ghafghazi T, Nasr Esfahani M, Ghaedi K. Suppressive role of Viola odorata extract on malignant characters of mammosphere-derived breast cancer stem cells. Clin Transl Oncol. 2020;22(1):1619-34.
https://doi.org/10.1007/s12094-020-02307-9
PMid:32056127  
 
21. Alipanah H, Bigdeli MR, Esmaeili MA. Inhibitory effect of Viola odorata extract on tumor growth and metastasis in 4T1 breast cancer model. Iran J Pharm Res. 2018; 17:276.  
 
22. Deldadeh N. Evaluation and comparison of antimicrobial and anti-cancer effects of aqueous and ethanolic extracts of violet. Multidiscip Cancer Investig. 2022; 6:0-0.  
 
23. Ebrahimzadeh MA, Nabavi SM, Nabavi SF, Bahramian F, Bekhradnia AR. Antioxidant and free radical scavenging activity of H. officinalis L. var. angustifolius, V. odorata, B. hyrcana and C. speciosum. Pak J Pharm Sci. 2010; 23:29-34.  
 
24. Saether O, Craik DJ, Campbell ID, Sletten K, Juul J, Norman DG. Elucidation of the primary and three-dimensional structure of the uterotonic polypeptide kalata B1. Biochemistry. 1995;34(14):4147-58.
https://doi.org/10.1021/bi00013a002
PMid:7703226  
 
25. Duke JA. Handbook of medicinal herbs. 2nd ed. CRC Press; 2002.
https://doi.org/10.1201/9781420040463  
 
26. Li D, Wang P, Luo Y, Zhao M, Chen F. Health benefits of anthocyanins and molecular mechanisms: update from recent decade. Crit Rev Food Sci Nutr. 2017;57(8):1729-41.
https://doi.org/10.1080/10408398.2015.1030064
PMid:26192537  
 
27. Svangård E, Burman R, Gunasekera S, Lövborg H, Gullbo J, Göransson U. Mechanism of action of cytotoxic cyclotides: cycloviolacin O2 disrupts lipid membranes. J Nat Prod. 2007;70(4):643-7.
https://doi.org/10.1021/np070007v
PMid:17378610  
 
28. Asadi-Samani M, Kooti W, Aslani E, Shirzad H. A systematic review of Iran's medicinal plants with anti-cancer effects. J Evid Based Complementary Altern Med. 2016;21(2):143-53.
https://doi.org/10.1177/2156587215600873
PMid:26297173  
 
29. Nussbaumer S, Bonnabry P, Veuthey JL, Fleury-Souverain S. Analysis of anticancer drugs: a review. Talanta. 2011;85(5):2265-89.
https://doi.org/10.1016/j.talanta.2011.08.034
PMid:21962644  
 
30. Dropcho EJ. The neurologic side effects of chemotherapeutic agents. Continuum (Minneap Minn). 2011;17(1):95-112.
https://doi.org/10.1212/01.CON.0000394676.67372.87
PMid:22810790  
 
31. Rechinger KH. Flora Iranica. 1963.  
 
32. Gharibi S, Tabatabaei BES, Saeidi G, Goli SAH, Talebi M. Total phenolic content and antioxidant activity of three Iranian endemic Achillea species. Ind Crops Prod. 2013; 50:154-8.
https://doi.org/10.1016/j.indcrop.2013.07.038  
 
33. Brangule A, Šukele R, Bandere D. Herbal medicine characterization perspectives using advanced FTIR sample techniques-diffuse reflectance (DRIFT) and photoacoustic spectroscopy (PAS). Front Plant Sci. 2020; 11:356.
https://doi.org/10.3389/fpls.2020.00356
PMid:32362902 PMCid:PMC7182013  
 
34. Gharibi S, Tabatabaei BES, Saeidi G, Talebi M, Matkowski A. The effect of drought stress on polyphenolic compounds and expression of flavonoid biosynthesis related genes in Achillea pachycephala Rech. f. Phytochemistry. 2019; 162:90-8.
https://doi.org/10.1016/j.phytochem.2019.03.004
PMid:30875522  
 
35. Zhang LC, Jin X, Huang Z, Yan ZN, Li PB, Duan RF, Feng H, Jiang JH, Peng H, Liu W Protective effects of choline against hypoxia-induced injuries of vessels and endothelial cells. Exp Ther Med. 2017; 13:2316-24.
https://doi.org/10.3892/etm.2017.4276
PMid:28565844 PMCid:PMC5443310  
 
36. Horibata S, Vo TV, Subramanian V, Thompson PR, Coonrod SA. Utilization of the soft agar colony formation assay to identify inhibitors of tumorigenicity in breast cancer cells. J Vis Exp. 2015; e52727.
https://doi.org/10.3791/52727-v
PMid:26067809 PMCid:PMC4542786  
 
37. Yang T, Zhai H, Yan R, Zhou Z, Gao L, Wang L. lncRNA CCAT1 promotes cell proliferation, migration, and invasion by down-regulation of miR-143 in FTC-133 thyroid carcinoma cell line. Braz J Med Biol Res. 2018;51.
https://doi.org/10.1590/1414-431x20187046
PMid:29791590 PMCid:PMC6002139  
 
38. Vuik FE, Nieuwenburg SA, Bardou M, Lansdorp-Vogelaar I, Dinis-Ribeiro M, Bento MJ, Zadnik V, Pellisé M, Esteban L, Kaminski MF. Increasing incidence of colorectal cancer in young adults in Europe over the last 25 years. Gut. 2019; 68:1820-6.
https://doi.org/10.1136/gutjnl-2018-317592
PMid:31097539 PMCid:PMC6839794  
 
39. Levin B, Lieberman DA, McFarland B, Andrews KS, Brooks D, Bond J, Dash C, Giardiello FM, Glick S, Johnson D. Screening and surveillance for the early detection of colorectal cancer and adenomatous polyps, 2008: a joint guideline from the American Cancer Society, the US Multi-Society Task Force on Colorectal Cancer, and the American College of Radiology. Gastroenterology. 2008; 134:1570-95.
https://doi.org/10.1053/j.gastro.2008.02.002
PMid:18384785  
 
40. Chabner B, Longo D. Clinical strategies for cancer treatment: the role of drugs. In: Cancer Chemotherapy and Biotherapy: Principles and Practice. 4th ed. Philadelphia: Lippincott Williams & Wilkins; 2006.  
 
41. Aslam MS, Naveed S, Ahmed A, Abbas Z, Gull I, Athar MA. Side effects of chemotherapy in cancer patients and evaluation of patients' opinion about starvation-based differential chemotherapy. J Cancer Ther. 2014;2014.
https://doi.org/10.4236/jct.2014.58089  
 
42. Safarzadeh E, Shotorbani SS, Baradaran B. Herbal medicine as inducers of apoptosis in cancer treatment. Adv Pharm Bull. 2014; 4:421.  
 
43. Smidt E, Meissl K. The applicability of Fourier transforms infrared (FT-IR) spectroscopy in waste management. Waste Manag. 2007; 27:268-76.
https://doi.org/10.1016/j.wasman.2006.01.016
PMid:16530397  
 
44. Skowyra M, Calvo MI, Gallego Iradi MG, Azman NABM, Almajano Pablos MP. Characterization of phytochemicals in petals of different colours from Viola×wittrockiana Gams and their correlation with antioxidant activity. J Agric Sci. 2014; 6:93-105.
https://doi.org/10.5539/jas.v6n9p93  
 
45. Selvakumar P, Badgeley A, Murphy P, Anwar H, Sharma U, Lawrence K, Lakshmikuttyamma A. Flavonoids and other polyphenols act as epigenetic modifiers in breast cancer. Nutrients. 2020; 12:761.
https://doi.org/10.3390/nu12030761
PMid:32183060 PMCid:PMC7146477  
 
46. Mahboubi M, Kashani LMT. A narrative study about the role of Viola odorata as traditional medicinal plant in management of respiratory problems. Adv Integr Med. 2018; 5:112-8.
https://doi.org/10.1016/j.aimed.2017.12.003  
 
47. Sarker U, Oba S. Polyphenol and flavonoid profiles and radical scavenging activity in leafy vegetable Amaranthus gangeticus. BMC Plant Biol. 2020; 20:1-12.
https://doi.org/10.1186/s12870-020-02700-0
PMid:33138787 PMCid:PMC7607633  
 
48. Sato Y, Itagaki S, Kurokawa T, Ogura J, Kobayashi M, Hirano T, Sugawara M, Iseki K. In vitro and in vivo antioxidant properties of chlorogenic acid and caffeic acid. Int J Pharm. 2011; 403:136-8.
https://doi.org/10.1016/j.ijpharm.2010.09.035
PMid:20933071  
 
49. Silva MM, Santos MR, Caroço G, Rocha R, Justino G, Mira L. Structure-antioxidant activity relationships of flavonoids: a re-examination. Free Radic Res. 2002; 36:1219-27.
https://doi.org/10.1080/198-1071576021000016472
PMid:12592674  
 
50. Herrmann A, Svangård E, Claeson P, Gullbo J, Bohlin L, Göransson U. Key role of glutamic acid for the cytotoxic activity of the cyclotide cycloviolacin O2. Cell Mol Life Sci. 2006; 63:235-45.
https://doi.org/10.1007/s00018-005-5486-4
PMid:16389447 PMCid:PMC11136400  
 
51. Silva MT. Secondary necrosis: the natural outcome of the complete apoptotic program. FEBS Lett. 2010; 584:4491-9.
https://doi.org/10.1016/j.febslet.2010.10.046
PMid:20974143  
 
52. El-Kott AF, Abd-El-Karim M, Khalifa HS, Morsy K, Ibrahim EH, Bin-Jumah M, Abdel-Daim MM, Aleya L. Kaempferol protects against cadmium chloride-induced hippocampal damage and memory deficits by activation of silent information regulator 1 and inhibition of poly (ADP-Ribose) polymerase-1. Sci Total Environ. 2020; 728:138832.
https://doi.org/10.1016/j.scitotenv.2020.138832
PMid:32353801  
 
53. Yu D, Liu C, Guo L. Mitochondrial metabolism and cancer metastasis. Ann Transl Med. 2020;8.
https://doi.org/10.21037/atm.2020.03.42
PMid:32793748 PMCid:PMC7396750  
 
54. Zeinoddini S, Nabiuni M, Jalali H. The synergistic cytotoxic effects of doxorubicin and Viola odorata extract on human breast cancer cell line T47-D. J Cancer Res Ther. 2019; 15:1073.
https://doi.org/10.4103/jcrt.JCRT_990_17
PMid:31603113  
 
55. Rauf A, Imran M, Khan IA, ur-Rehman M, Gilani SA, Mehmood Z, Mubarak MS. Anti-cancer potential of quercetin: A comprehensive review. Phytother Res. 2018; 32:2109-30.
https://doi.org/10.1002/ptr.6155
PMid:30039547  
 
56. McSherry EA, Brennan K, Hudson L, Hill AD, Hopkins AM. Breast cancer cell migration is regulated through junctional adhesion molecule-A-mediated activation of Rap1 GTPase. Breast Cancer Res. 2011; 13:1-14.
https://doi.org/10.1186/bcr2853
PMid:21429211 PMCid:PMC3219194  
 
57. Sun DW, Mao L, Zhang J, Jiang LH, Li J, Wu Y, Ji H, Chen W, Wang J, Ma R. MiR-139-5p inhibits the biological function of breast cancer cells by targeting Notch1 and mediates chemosensitivity to docetaxel. Biochem Biophys Res Commun. 2015; 465:702-13.
https://doi.org/10.1016/j.bbrc.2015.08.053
PMid:26299922  
 
58. Tuasha N, Seifu D, Gadisa E, Petros B, Oredsson S. Solvent fractions of selected Ethiopian medicinal plants used in traditional breast cancer treatment inhibit cancer stem cells in a breast cancer cell line. BMC Complement Med Ther. 2020; 20:1-9
https://doi.org/10.1186/s12906-020-03154-5
PMid:33238963 PMCid:PMC7687706