Document Type : Review Article/ Systematic Review Article/ Meta Analysis
Authors
1 Department of Biostatistics, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
2 Health Information Technology unit of Economic Health Department, Mashhad University of Medical Sciences, Mashhad, Iran
Abstract
Keywords
Copyright © 2024, Razavi International Journal of Medicine. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
1. Zingg, W., A. Holmes, M. Dettenkofer, T. Goetting, F. Secci, L. Clack, et al., Hospital organisation, management, and structure for prevention of health-care-associated infection: a systematic review and expert consensus. Lancet Infect Dis, 2015. 15(2): p. 212-224. doi: 10.1016/S1473-3099(14)70854-0. [PubMed:25467650). https://doi.org/10.1016/S1473-3099(14)70854-0 PMid:25467650 |
||||
2. Haque, M., M. Sartelli, J. McKimm and M.A. Bakar, Health care-associated infections-an overview. Infect Drug Resist, 2018: p. 2321-2333. doi: 10.2147/IDR.S177247. [PubMed: 6245375). https://doi.org/10.2147/IDR.S177247 PMid:30532565 PMCid:PMC6245375 |
||||
3. Despotović, A., N. Milić, A. Cirković, B. Milošević, S. Jovanović, V. Mioljević, et al., Incremental costs of hospital-acquired infections in COVID-19 patients in an adult intensive care unit of a tertiary hospital from a low-resource setting. Antimicrob. Resist. Infect. Control, 2023. 12(1): p. 39. doi: 10.1186/s13756-023-01240-0. [PubMed: 10120483). https://doi.org/10.1186/s13756-023-01240-0 PMid:37085906 PMCid:PMC10120483 |
||||
4. Sundermann, A.J., J. Chen, J.K. Miller, M.I. Saul, K.A. Shutt, M.P. Griffith, et al., Outbreak of Pseudomonas aeruginosa Infections from a Contaminated Gastroscope Detected by Whole Genome Sequencing Surveillance. Clin. Infect. Dis, 2021. 73(3): p. e638-e642. doi: 10.1093/cid/ciaa1887 . [PubMed: 33367518). https://doi.org/10.1093/cid/ciaa1887 PMid:33367518 PMCid:PMC8326550 |
||||
5. Mancini, A., L. Vito, E. Marcelli, M. Piangerelli, R. De Leone, S. Pucciarelli, et al., Machine learning models predicting multidrug resistant urinary tract infections using "DsaaS". BMC bioinformatics, 2020. 21(Suppl 10): p. 347. doi: 10.1186/s12859-020-03566-7. [PubMed: 7446147). https://doi.org/10.1186/s12859-020-03566-7 PMid:32838752 PMCid:PMC7446147 |
||||
6. Ghaffar Nia, N., E. Kaplanoglu and A. Nasab, Evaluation of artificial intelligence techniques in disease diagnosis and prediction. Discover Artificial Intelligence, 2023. 3(1): p. 5. doi: 10.1007/s44163-023-00049-5. [PubMed: 9885935). https://doi.org/10.1007/s44163-023-00049-5 PMCid:PMC9885935 |
||||
7. Møller, J.K., M. Sørensen and C. Hardahl, Prediction of risk of acquiring urinary tract infection during hospital stay based on machine-learning: A retrospective cohort study. PloS one, 2021. 16(3): p. e0248636. doi: 10.1371/journal.pone.0248636. [PubMed: 8011767). https://doi.org/10.1371/journal.pone.0248636 PMid:33788888 PMCid:PMC8011767 |
||||
8. Han, X., W. Wu, H. Zhao and S. Wang, Developing and validating a prediction model for in-hospital mortality in patients with ventilator-associated pneumonia in the ICU. Ann Palliat Med, 2022. 11(5): p. 1799-1810. doi: 10.21037/apm-22-502. [PubMed: 35672896). https://doi.org/10.21037/apm-22-502 PMid:35672896 |
||||
9. Atkinson, A., B. Ellenberger, V. Piezzi, T. Kaspar, L. Salazar-Vizcaya, O. Endrich, et al., Extending outbreak investigation with machine learning and graph theory: Benefits of new tools with application to a nosocomial outbreak of a multidrug-resistant organism. Infect Control Hosp Epidemiol, 2023. 44(2): p. 246-252. doi: 10.1017/ice.2022.66. [PubMed: 36111457). https://doi.org/10.1017/ice.2022.66 PMid:36111457 PMCid:PMC9929710 |
||||
10. Zachariah, P., E. Sanabria, J. Liu, B. Cohen, D. Yao and E. Larson, Novel Strategies for Predicting Healthcare-Associated Infections at Admission: Implications for Nursing Care. Nurs Res, 2020. 69(5): p. 399-403.10.1097. doi: 10.1097/NNR.0000000000000449. [PubMed: 32604154). https://doi.org/10.1097/NNR.0000000000000449 PMid:32604154 |
||||
11. Zhang, J., F. Xue, S.D. Liu, D. Liu, Y.H. Wu, D. Zhao, et al., Risk factors and prediction model for inpatient surgical site infection after elective abdominal surgery. World J Gastrointest Surg, 2023. 15(3): p. 387-397. doi: 10.4240/wjgs.v15.i3.387. [PubMed: 10080607). https://doi.org/10.4240/wjgs.v15.i3.387 PMid:37032800 PMCid:PMC10080607 |
||||
12. Xu, Y., C. Lai, G. Xu, W. Meng, J. Zhang, H. Hou, et al., Risk factors of ventilator-associated pneumonia in elderly patients receiving mechanical ventilation. Clin Interv Aging, 2019. 14: p. 1027-1038. doi: 10.2147/cia.s197146. [PubMed: 6566835). https://doi.org/10.2147/CIA.S197146 PMid:31289438 PMCid:PMC6566835 |
||||
13. Wang, Y., Q. Lin, Z. Chen, H. Hou, N. Shen, Z. Wang, et al., Construction of a Risk Prediction Model for Subsequent Bloodstream Infection in Intestinal Carriers of Carbapenem-Resistant Enterobacteriaceae: A Retrospective Study in Hematology Department and Intensive Care Unit. Infect Drug Resist, 2021. 14: p. 815-824. doi: 10.2147/idr.s286401 . [PubMed: 7936666). https://doi.org/10.2147/IDR.S286401 PMid:33688216 PMCid:PMC7936666 |
||||
14. Wang, H., P. Zhao, D. Sun, X. Wu, Q.F. Yuan and K.W. Wang, [Epidemiological characteristics and the establishment and evaluation of a risk prediction model for nosocomial infection in burn patients). Zhonghua Shao Shang Za Zhi, 2022. 38(12): p. 1170-1178. doi: 10.3760/cma.j.cn501225-20220214-00025. [PubMed: 36594148). | ||||
15. Wang, C., C. Peng, L. Ning, X. Qiu, K. Wu, N. Yang, et al., Development and Validation of a Nomogram to Assist Monitoring Nosocomial SARS-CoV-2 Infection of Hospitalized Patients. J Inflamm Res, 2022. 15: p. 1471-1481. doi: 10.2147/jir.s351509.Pmc8896769. [PubMed: 35250295). https://doi.org/10.2147/JIR.S351509 PMid:35250295 PMCid:PMC8896769 |
||||
16. Pei, Y., Y. Huang, X. Pan, Z. Yao, C. Chen, A. Zhong, et al., Nomogram for predicting 90-day mortality in patients with Acinetobacter baumannii-caused hospital-acquired and ventilator-associated pneumonia in the respiratory intensive care unit. J Int Med Res, 2023. 51(3): p. 3000605231161481. doi: 10.1016/s0045-6535(98)00362-2 . [PubMed: 10028662). https://doi.org/10.1016/S0045-6535(98)00362-2 PMid:10028662 |
||||
17. Jiang, L., J. Ma, F. Li and N. Qin, Association between incubator standards and newborn nosocomial infection with machine-learning prediction. Transl Pediatr, 2023. 12(4): p. 655-662. doi: 10.21037/tp-23-171. [PubMed: 10167382). https://doi.org/10.21037/tp-23-171 PMid:37181021 PMCid:PMC10167382 |
||||
18. Li, S., L. Shang, L. Yuan, W. Li, H. Kang, W. Zhao, et al., Construction and Validation of a Predictive Model for the Risk of Ventilator-Associated Pneumonia in Elderly ICU Patients. Can Respir J, 2023. 2023: p. 7665184. doi: 10.1210/jcem.83.12.5329 . [PubMed: 9851783). https://doi.org/10.1210/jcem.83.12.5329 PMid:9851783 |
||||
19. Chen, Z., Z. Xu, H. Wu, S. Gao, H. Wang, J. Jiang, et al., Derivation and validation of a nomogram for predicting nonventilator hospital-acquired pneumonia among older hospitalized patients. BMC Pulm Med, 2022. 22(1): p. 144.doi: 10.1186/s12890-022-01941-z . [PubMed: 35428276). https://doi.org/10.1186/s12890-022-01941-z PMid:35428276 PMCid:PMC9011946 |
||||
20. Ai, J., Y. Hu, F.F. Zhou, Y.X. Liao and T. Yang, Machine learning-assisted ensemble analysis for the prediction of urinary tract infection in elderly patients with ovarian cancer after cytoreductive surgery. World J Clin Oncol, 2022. 13(12): p. 967-979. doi: 10.5306/wjco.v13.i12.967 . [PubMed: 36618079). https://doi.org/10.5306/wjco.v13.i12.967 PMid:36618079 PMCid:PMC9813835 |
||||
21. Li, S., J. Liu, F. Chen, K. Cai, J. Tan, W. Xie, et al., A risk score based on pediatric sequential organ failure assessment predicts 90-day mortality in children with Klebsiella pneumoniae bloodstream infection. BMC Infect Dis, 2020. 20(1): p. 916. doi: 10.1186/s12879-020-05644-w . [PubMed: 7709332). https://doi.org/10.1186/s12879-020-05644-w PMid:33267829 PMCid:PMC7709332 |
||||
22. Goodwin, T.R. and D. Demner-Fushman, Deep Learning from Incomplete Data: Detecting Imminent Risk of Hospital-acquired Pneumonia in ICU Patients. MIA ... Annual Symposium proceedings / AMIA Symposium, 2019. 2019: p. 467-476. [PubMed: 32308840). | ||||
23. Wu, Z., Y. Liu, J. Xu, J. Xie, S. Zhang, L. Huang, et al., A Ventilator-associated Pneumonia Prediction Model in Patients With Acute Respiratory Distress Syndrome. Clin Infect Dis, 2020. 71(Suppl 4): p. S400-s408.10.1093/ cid/ciaa1518. doi: 10.1093/cid/ciaa1518 . [PubMed: 33367575). https://doi.org/10.1093/cid/ciaa1518 PMid:33367575 |
||||
24. Giang, C., J. Calvert, K. Rahmani, G. Barnes, A. Siefkas, A. Green-Saxena, et al., Predicting ventilator-associated pneumonia with machine learning. Medicine, 2021. 100(23): p. e26246. doi: 10.1097/MD.0000000000026246. [PubMed: 34115013). https://doi.org/10.1097/MD.0000000000026246 PMid:34115013 PMCid:PMC8202554 |
||||
25. Nistal-Nuño, B., A neural network for prediction of risk of nosocomial infection at intensive care units: a didactic preliminary model. Einstein (Sao Paulo, Brazil), 2020. 18: p. eAO5480. doi: 10.31744/einstein_journal/2020AO5480 . [PubMed: 33237246). https://doi.org/10.31744/einstein_journal/2020AO5480 PMid:33237246 PMCid:PMC7664827 |
||||
26. Liao, Y.H., Z.C. Wang, F.G. Zhang, M.F. Abbod, C.H. Shih and J.S. Shieh, Machine Learning Methods Applied to Predict Ventilator-Associated Pneumonia with Pseudomonas aeruginosa Infection via Sensor Array of Electronic Nose in Intensive Care Unit. Sensors (Basel), 2019. 19(8). doi: 10.3390/s19081866. [PubMed: 31003541). https://doi.org/10.3390/s19081866 PMid:31003541 PMCid:PMC6514817 |
||||
27. Kuo, K.M., P.C. Talley, C.H. Huang and L.C. Cheng, Predicting hospital-acquired pneumonia among schizophrenic patients: a machine learning approach. BMC Med Inform Decis Mak, 2019. 19(1): p. 42. doi: 10.1186/s12911-019-0792-1. [PubMed: 30866913). https://doi.org/10.1186/s12911-019-0792-1 PMid:30866913 PMCid:PMC6417112 |
||||
28. Tilton, C.S. and S.W. Johnson, Development of a risk prediction model for hospital-onset Clostridium difficile infection in patients receiving systemic antibiotics. Am J Infect Control, 2019. 47(3): p. 280-284.10.1016/j.ajic. 2018.08.021. doi: 10.1016/j.ajic.2018.08.021 . [PubMed: 30318399). https://doi.org/10.1016/j.ajic.2018.08.021 PMid:30318399 |
||||
29. Rabhi, S., J. Jakubowicz and M.H. Metzger, Deep Learning versus Conventional Machine Learning for Detection of Healthcare-Associated Infections in French Clinical Narratives. Am J Infect Control, 2019. 58(1): p. 31-41.10.1055/s-0039-1677692. doi: 10.1055/s-0039-1677692 . [PubMed: 30877683). https://doi.org/10.1055/s-0039-1677692 PMid:30877683 |
||||
30. Roimi, M., A. Neuberger, A. Shrot, M. Paul, Y. Geffen and Y. Bar-Lavie, Early diagnosis of bloodstream infections in the intensive care unit using machine-learning algorithms. Intensive Care Med, 2020. 46(3): p. 454-462. doi: 10.1007/s00134-019-05876-8 . [PubMed: 31912208). https://doi.org/10.1007/s00134-019-05876-8 PMid:31912208 |
||||
31. Montella, E., A. Ferraro, G. Sperlì, M. Triassi, S. Santini and G. Improta, Predictive Analysis of Healthcare-Associated Blood Stream Infections in the Neonatal Intensive Care Unit Using Artificial Intelligence: A Single Center Study. Int J Environ Res Public Health, 2022. 19(5). doi: 10.3390/ijerph19052498. [PubMed: 35270190). https://doi.org/10.3390/ijerph19052498 PMid:35270190 PMCid:PMC8909182 |
||||
32. Karajizadeh, M., M. Nasiri, M. Yadollahi, A.H. Zolfaghari and A. Pakdam, Mortality Prediction from Hospital-Acquired Infections in Trauma Patients Using an Unbalanced Dataset. Healthc Inform Res, 2020. 26(4): p. 284-294. doi:10.4258/hir.2020.26.4.284. [PubMed: 33190462). https://doi.org/10.4258/hir.2020.26.4.284 PMid:33190462 PMCid:PMC7674815 |
||||
33. Barchitta, M., A. Maugeri, G. Favara, P.M. Riela, G. Gallo, I. Mura, et al., A machine learning approach to predict healthcare-associated infections at intensive care unit admission: findings from the SPIN-UTI project. J Hosp Infect, 2021. 112: p. 77-86. doi: 10.1016/j.jhin.2021.02.025 . [PubMed: 33676936). https://doi.org/10.1016/j.jhin.2021.02.025 PMid:33676936 |
||||
34. Walker, L.W., A.J. Nowalk and S. Visweswaran, Predicting outcomes in central venous catheter salvage in pediatric central line-associated bloodstream infection. J Am Med Inform Assoc, 2021. 28(4): p. 862-867.10.1093/jamia/ocaa328.Pmc7973452. doi: 10.1093/jamia/ocaa328. [PubMed: 33463685). https://doi.org/10.1093/jamia/ocaa328 PMid:33463685 PMCid:PMC7973452 |
||||
35. Dos Santos, R.P., D. Silva, A. Menezes, S. Lukasewicz, C.H. Dalmora, O. Carvalho, et al., Automated healthcare-associated infection surveillance using an artificial intelligence algorithm. Infect Prev Pract, 2021. 3(3): p. 100167. doi: 10.1016/j.infpip.2021.100167. [PubMed: 34471868). https://doi.org/10.1016/j.infpip.2021.100167 PMid:34471868 PMCid:PMC8387762 |
||||
36. Myall, A., J.R. Price, R.L. Peach, M. Abbas, S. Mookerjee, N. Zhu, et al., Prediction of hospital-onset COVID-19 infections using dynamic networks of patient contact: an international retrospective cohort study. The Lancet. Digital health, 2022. 4(8): p. e573-e583. doi: 10.1016/S2589-7500(22)00093-0 . [PubMed: 35868812). https://doi.org/10.1016/S2589-7500(22)00093-0 PMid:35868812 |
||||
37. Liang, Y., C. Zhu, C. Tian, Q. Lin, Z. Li, Z. Li, et al., Early prediction of ventilator-associated pneumonia in critical care patients: a machine learning model. BMC Pulm Med, 2022. 22(1): p. 250. doi: 10.1186/s12890-022-02031-w . [PubMed: 35752818). https://doi.org/10.1186/s12890-022-02031-w PMid:35752818 PMCid:PMC9233772 |
||||
38. Thurzo, A., W. Urbanová, B. Novák, L. Czako, T. Siebert, P. Stano, et al., Where Is the Artificial Intelligence Applied in Dentistry? Systematic Review and Literature Analysis. Healthcare (Basel, Switzerland), 2022. 10(7). doi: 10.3390/healthcare10071269 . [PubMed: 35885796). https://doi.org/10.3390/healthcare10071269 PMid:35885796 PMCid:PMC9320442 |
||||
39. Jin, P., X. Ji, W. Kang, Y. Li, H. Liu, F. Ma, et al., Artificial intelligence in gastric cancer: a systematic review. J Cancer Res Clin Oncol , 2020. 146(9): p. 2339-2350.10.1007/s00432-020-03304-9. doi: 10.1007/s00432-020-03304-9. [PubMed: 32613386). https://doi.org/10.1007/s00432-020-03304-9 PMid:32613386 |
||||
40. Kirk, D., C. Catal and B. Tekinerdogan, Precision nutrition: A systematic literature review. Comput Biol Med, 2021. 133: https://doi.org/10.1016/j.compbiomed.2021.104365 PMid:33866251 |
||||
p. 104365. doi: 10.1016/j.compbiomed.2021.104365 . [PubMed: 33866251). https://doi.org/10.1016/j.compbiomed.2021.104365 PMid:33866251 |
||||
41. Frondelius, T., I. Atkova, J. Miettunen, J. Rello and M.M. Jansson, Diagnostic and prognostic prediction models in ventilator-associated pneumonia: Systematic review and meta-analysis of prediction modelling studies. J Crit Care, 2022. 67: p. 44-56. doi: 10.1016/j.jcrc.2021.10.001 . [PubMed: 34673331). https://doi.org/10.1016/j.jcrc.2021.10.001 PMid:34673331 |
||||
42. Raoofi, S., F. Pashazadeh Kan, S. Rafiei, Z. Hosseinipalangi, Z. Noorani Mejareh, S. Khani, et al., Global prevalence of nosocomial infection: A systematic review and meta-analysis. PloS one, 2023. 18(1): p. e0274248. doi: 10.1371/journal.pone.0274248 . [PubMed: 36706112). https://doi.org/10.1371/journal.pone.0274248 PMid:36706112 PMCid:PMC9882897 |
||||
43. Akazawa, M. and K. Hashimoto, Artificial intelligence in gynecologic cancers: Current status and future challenges - A systematic review. Artif Intell Med, 2021. 120: p. 102164. https://doi.org/10.1016/j.artmed.2021.102164 PMid:34629152 |
||||
doi: 10.1016/j.artmed.2021.102164 [PubMed: 34629152). https://doi.org/10.1016/j.artmed.2021.102164 PMid:34629152 |