Document Type : Original Article
Authors
1 Department of Exercise physiology, Faculty of Sport Sciences, Hakim Sabzevari University, Sabzevar, Iran
2 Department of Exercise Physiology, Faculty of Sport Sciences, Hakim Sabzevari University, Sabzevar, Iran
Abstract
Keywords
Open Access Policy: This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/
1. Jiang Q, Lou K, Hou L, Lu Y, Sun L, Tan SC, et al. The effect of resistance training on serum insulin-like growth factor 1 (IGF-1): a systematic review and meta-analysis. Complementary Therapies in Medicine. 2020:102360. https://doi.org/10.1016/j.ctim.2020.102360 PMid:32444042 |
||||
2. Li L, Xiong W-C, Mei L. Neuromuscular junction formation, aging, and disorders. Annual review of physiology. 2018;80:159-88. https://doi.org/10.1146/annurev-physiol-022516-034255 PMid:29195055 |
||||
3. Cracana I, Stefaniu R, Mocanu V, Alexa I-D. New Developments in the Approach and Diagnosis of Sarcopenia. Revista medico-chirurgicala a Societatii de Medici si Naturalisti din Iasi. 2016;120(3):491-6. | ||||
4. Gubbi S, Quipildor GF, Barzilai N, Huffman DM, Milman S. 40 YEARS of IGF1: IGF1: the Jekyll and Hyde of the aging brain. Journal of molecular endocrinology. 2018;61(1):T171-T85. https://doi.org/10.1530/JME-18-0093 PMid:29739805 PMCid:PMC5988994 |
||||
5. Ahmad SS, Ahmad K, Lee EJ, Lee Y-H, Choi I. Implications of insulin-like growth Factor-1 in skeletal muscle and various diseases. Cells. 2020;9(8):1773. https://doi.org/10.3390/cells9081773 PMid:32722232 PMCid:PMC7465464 |
||||
6. Bian A, Ma Y, Zhou X, Guo Y, Wang W, Zhang Y, et al. Association between sarcopenia and levels of growth hormone and insulin-like growth factor-1 in the elderly. BMC musculoskeletal disorders. 2020;21(1):1-9. https://doi.org/10.1186/s12891-020-03236-y PMid:32264885 PMCid:PMC7140321 |
||||
7. Kougias DG, Das T, Perez AB, Pereira SL. A role for nutritional intervention in addressing the aging neuromuscular junction. Nutrition Research. 2018;53:1-14. https://doi.org/10.1016/j.nutres.2018.02.006 PMid:29804584 |
||||
8. Anagnostis P, Dimopoulou C, Karras S, Lambrinoudaki I, Goulis DG. Sarcopenia in post-menopausal women: Is there any role for vitamin D? Maturitas. 2015;82(1):56-64. https://doi.org/10.1016/j.maturitas.2015.03.014 PMid:25882761 |
||||
9. Dehkordi EH, Dehkordi VH, Fatemi SMR, Zolfaghari M. Effect of vitamin D supplement therapy on HbA1C and IGF-1 levels in children with type 1 diabetes mellitus and vitamin D deficiency. Electron J Gen Med. 2018;15(4):em69. https://doi.org/10.29333/ejgm/93167 |
||||
10. Kord-Varkaneh H, Rinaldi G, Hekmatdoost A, Fatahi S, Tan SC, Shadnoush M, et al. The influence of vitamin D supplementation on IGF-1 levels in humans: A systematic review and meta-analysis. Ageing research reviews. 2020;57:100996. https://doi.org/10.1016/j.arr.2019.100996 PMid:31816443 |
||||
11. Ciulei G, Orasan OH, Coste SC, Cozma A, Negrean V, Procopciuc LM. Vitamin D and the insulin‐like growth factor system: Implications for colorectal neoplasia. European journal of clinical investigation. 2020;50(9):e13265. https://doi.org/10.1111/eci.13265 PMid:32379895 |
||||
12. Meshkini F, Abdollahi S, Clark CC, Soltani S. The effect of vitamin D supplementation on insulin-like growth factor-1: A systematic review and meta-analysis of randomized controlled trials. Complementary Therapies in Medicine. 2020;50:102300. https://doi.org/10.1016/j.ctim.2020.102300 PMid:32444034 |
||||
13. Sakai S, Suzuki M, Tashiro Y, Tanaka K, Takeda S, Aizawa K, et al. Vitamin D receptor signaling enhances locomotive ability in mice. Journal of Bone and Mineral Research. 2015;30(1):128-36. https://doi.org/10.1002/jbmr.2317 PMid:25043694 |
||||
14. Bosaeus I, Rothenberg E. Nutrition and physical activity for the prevention and treatment of age-related sarcopenia. Proceedings of the Nutrition Society. 2016;75(2):174-80. https://doi.org/10.1017/S002966511500422X PMid:26620911 |
||||
15. Rondanelli M, Klersy C, Terracol G, Talluri J, Maugeri R, Guido D, et al. Whey protein, amino acids, and vitamin D supplementation with physical activity increases fat-free mass and strength, functionality, and quality of life and decreases inflammation in sarcopenic elderly. The American journal of clinical nutrition. 2016;103(3):830-40. https://doi.org/10.3945/ajcn.115.113357 PMid:26864356 |
||||
16. Tsai C-L, Wang C-H, Pan C-Y, Chen F-C. The effects of long-term resistance exercise on the relationship between neurocognitive performance and GH, IGF-1, and homocysteine levels in the elderly. Frontiers in behavioral neuroscience. 2015;9:23. https://doi.org/10.3389/fnbeh.2015.00023 |
||||
17. Arnarson A, Geirsdottir OG, Ramel A, Jonsson P, Thorsdottir I. Insulin-like growth factor-1 and resistance exercise in community dwelling old adults. The journal of nutrition, health & aging. 2015;19(8):856-60. https://doi.org/10.1007/s12603-015-0547-3 PMid:26412290 |
||||
18. Hazell T, Kenno K, Jakobi J. Functional benefit of power training for older adults. Journal of Aging and Physical Activity. 2007;15(3):349-59. https://doi.org/10.1123/japa.15.3.349 PMid:17724399 |
||||
19. Drey M, Sieber C, Bauer J, Uter W, Dahinden P, Fariello R, et al. C-terminal Agrin Fragment as a potential marker for sarcopenia caused by degeneration of the neuromuscular junction. Experimental gerontology. 2013;48(1):76-80. https://doi.org/10.1016/j.exger.2012.05.021 PMid:22683512 |
||||
20. Willoughby DS, Beretich KN, Chen M, Funderburk LK. Decreased Serum Levels of C-Terminal Agrin in Postmenopausal Women Following Resistance Training. Journal of Aging and Physical Activity. 2019;1(aop):1-8. https://doi.org/10.1123/japa.2019-0066 PMid:31629361 |
||||
21. Uusi-Rasi K, Patil R, Karinkanta S, Kannus P, Tokola K, Lamberg-Allardt C, et al. Exercise and vitamin D in fall prevention among older women: a randomized clinical trial. JAMA internal medicine. 2015;175(5):703-11. https://doi.org/10.1001/jamainternmed.2015.0225 PMid:25799402 |
||||
22. Radaelli R, Brusco CM, Lopez P, Rech A, Machado CL, Grazioli R, et al. Higher muscle power training volume is not determinant for the magnitude of neuromuscular improvements in elderly women. Experimental gerontology. 2018;110:15-22. https://doi.org/10.1016/j.exger.2018.04.015 PMid:29730331 |
||||
23. Jones CJ, Rikli RE. Measuring functional. The Journal on active aging. 2002;1:24-30. | ||||
24. Agergaard J, Trøstrup J, Uth J, Iversen JV, Boesen A, Andersen JL, et al. Does vitamin-D intake during resistance training improve the skeletal muscle hypertrophic and strength response in young and elderly men?-a randomized controlled trial. Nutrition & metabolism. 2015;12(1):32. https://doi.org/10.1186/s12986-015-0029-y PMid:26430465 PMCid:PMC4589960 |
||||
25. Pirotta S, Kidgell D, Daly R. Effects of vitamin D supplementation on neuroplasticity in older adults: a double-blinded, placebo-controlled randomised trial. Osteoporosis international. 2015;26(1):131-40. https://doi.org/10.1007/s00198-014-2855-6 PMid:25138265 |
||||
26. Trummer C, Schwetz V, Pandis M, Grübler M, Verheyen N, Gaksch M, et al. Effects of vitamin D supplementation on IGF-1 and calcitriol: a randomized-controlled trial. Nutrients. 2017;9(6):623. https://doi.org/10.3390/nu9060623 PMid:28629132 PMCid:PMC5490602 |
||||
27. Pludowski P, Holick MF, Grant WB, Konstantynowicz J, Mascarenhas MR, Haq A, et al. Vitamin D supplementation guidelines. The Journal of steroid biochemistry and molecular biology. 2018;175:125-35. https://doi.org/10.1016/j.jsbmb.2017.01.021 PMid:28216084 |
||||
28. Pfeifer M, Begerow B, Minne H. Vitamin D and muscle function. Osteoporosis International. 2002;13(3):187-94. https://doi.org/10.1007/s001980200012 PMid:11991436 |
||||
29. Mazahery H, von Hurst P. Factors affecting 25-hydroxyvitamin D concentration in response to vitamin D supplementation. Nutrients. 2015;7(7):5111-42. https://doi.org/10.3390/nu7075111 PMid:26121531 PMCid:PMC4516990 |
||||
30. Hofmann M, Schober-Halper B, Oesen S, Franzke B, Tschan H, Bachl N, et al. Effects of elastic band resistance training and nutritional supplementation on muscle quality and circulating muscle growth and degradation factors of institutionalized elderly women: the Vienna Active Ageing Study (VAAS). European journal of applied physiology. 2016;116(5):885-97. https://doi.org/10.1007/s00421-016-3344-8 PMid:26931422 PMCid:PMC4834098 |
||||
31. Annibalini G, Lucertini F, Agostini D, Vallorani L, Gioacchini A, Barbieri E, et al. Concurrent aerobic and resistance training has anti-inflammatory effects and increases both plasma and leukocyte levels of IGF-1 in late middle-aged type 2 diabetic patients. Oxidative medicine and cellular longevity. 2017;2017. https://doi.org/10.1155/2017/3937842 PMid:28713486 PMCid:PMC5497609 |
||||
32. Seo D-I, Jun T-W, Park K-S, Chang H, So W-Y, Song W. 12 weeks of combined exercise is better than aerobic exercise for increasing growth hormone in middle-aged women. International journal of sport nutrition and exercise metabolism. 2010;20(1):21-6. https://doi.org/10.1123/ijsnem.20.1.21 PMid:20190348 |
||||
33. Kajantie E, Dunkel L, Rutanen E-M, Seppälä M, Koistinen R, Sarnesto A, et al. IGF-I, IGF binding protein (IGFBP)-3, phosphoisoforms of IGFBP-1, and postnatal growth in very low birth weight infants. The Journal of Clinical Endocrinology & Metabolism. 2002;87(5):2171-9. https://doi.org/10.1210/jcem.87.5.8457 PMid:11994360 |
||||
34. Wu K, Feskanich D, Fuchs CS, Chan AT, Willett WC, Hollis BW, et al. Interactions between plasma levels of 25-hydroxyvitamin D, insulin-like growth factor (IGF)-1 and C-peptide with risk of colorectal cancer. PLoS One. 2011;6(12):e28520. https://doi.org/10.1371/journal.pone.0028520 PMid:22216097 PMCid:PMC3247212 |
||||
35. Ascenzi F, Barberi L, Dobrowolny G, Villa Nova Bacurau A, Nicoletti C, Rizzuto E, et al. Effects of IGF‐1 isoforms on muscle growth and sarcopenia. Aging cell. 2019;18(3):e12954. https://doi.org/10.1111/acel.12954 PMid:30953403 PMCid:PMC6516183 |
||||
36. Psilander N, Damsgaard R, Pilegaard H. Resistance exercise alters MRF and IGF-I mRNA content in human skeletal muscle. Journal of Applied Physiology. 2003;95(3):1038-44. https://doi.org/10.1152/japplphysiol.00903.2002 PMid:12716875 |
||||
37. Coetsee C, Terblanche E. The time course of changes induced by resistance training and detraining on muscular and physical function in older adults. European Review of Aging and Physical Activity. 2015;12(1):7. https://doi.org/10.1186/s11556-015-0153-8 PMid:26865871 PMCid:PMC4748325 |
||||
38. Straight CR, Lindheimer JB, Brady AO, Dishman RK, Evans EM. Effects of resistance training on lower-extremity muscle power in middle-aged and older adults: a systematic review and meta-analysis of randomized controlled trials. Sports Medicine. 2016;46(3):353-64. https://doi.org/10.1007/s40279-015-0418-4 PMid:26545362 |
||||
39. Li R, Xia J, Zhang X, Gathirua-Mwangi WG, Guo J, Li Y, et al. Associations of muscle mass and strength with all-cause mortality among US older adults. Medicine and science in sports and exercise. 2018;50(3):458. https://doi.org/10.1249/MSS.0000000000001448 PMid:28991040 PMCid:PMC5820209 |
||||
40. Gomes MJ, Martinez PF, Pagan LU, Damatto RL, Cezar MDM, Lima ARR, et al. Skeletal muscle aging: influence of oxidative stress and physical exercise. Oncotarget. 2017;8(12):20428. https://doi.org/10.18632/oncotarget.14670 PMid:28099900 PMCid:PMC5386774 |
||||
41. Zeng F, Zhao H, Liao J. Androgen interacts with exercise through the mTOR pathway to induce skeletal muscle hypertrophy. Biology of sport. 2017;34(4):313. https://doi.org/10.5114/biolsport.2017.69818 PMid:29472733 PMCid:PMC5819476 |
||||
42. Yoshida T, Delafontaine P. Mechanisms of IGF-1-mediated regulation of skeletal muscle hypertrophy and atrophy. Cells. 2020;9(9):1970. https://doi.org/10.3390/cells9091970 PMid:32858949 PMCid:PMC7564605 |
||||
43. Stockton KA, Mengersen K, Paratz JD, Kandiah D, Bennell KL. Effect of vitamin D supplementation on muscle strength: a systematic review and meta-analysis. Osteoporosis international. 2011;22(3):859-71. https://doi.org/10.1007/s00198-010-1407-y PMid:20924748 |
||||
44. Moreira-Pfrimer LD, Pedrosa MA, Teixeira L, Lazaretti-Castro M. Treatment of vitamin D deficiency increases lower limb muscle strength in institutionalized older people independently of regular physical activity: a randomized double-blind controlled trial. Annals of Nutrition and Metabolism. 2009;54(4):291-300. https://doi.org/10.1159/000235874 PMid:19729890 |
||||
45. Wimalawansa SJ. Non-musculoskeletal benefits of vitamin D. The Journal of steroid biochemistry and molecular biology. 2018;175:60-81. https://doi.org/10.1016/j.jsbmb.2016.09.016 PMid:27662817 |
||||