The Effect of Eight Weeks Aerobic Training and Omega3 Ingestion on the Levels of CTRP-9 and Adiponectin in Overweight and Obese Women

Document Type : Original Article

Authors

1 Department of Physical Education and Sport Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran

2 Department of physical education and sport sciences, Shahr-e-Qods Branch, Islamic azad university, Tehran, Iran

Abstract

Background: Adiponectin and CTRP-9 are adipose tissue secreted adipokines mediating various tissue functions.
 
Objectives: The present study aimed to investigate the effect of eight weeks of aerobic training and omega-3 ingestion on the levels of CTRP-9 and adiponectin in overweight and obese women.
 
Methods: A total of 40 women within the age range of 20-35 years (mean age: 27.29±3.27 years) and mean body mass index of 29.6±1.93 kg.m2 participated voluntarily in the present study. The participants were then randomly assigned into four groups (10 cases per group) of placebo, omega-3, training, and training+omega-3. The aerobic training program lasted eight weeks (three sessions per week); moreover, the omega-3 and training+omega-3 groups consumed 2,000 mg of omega-3 supplements daily. Blood samples were collected pre- and post-intervention (48 h after the last training session or omega-3 consumption). Following that, adiponectin, CTRP-9, and insulin levels were measured by ELISA. Data analysis was performed using the analysis of covariance and Bonferroni post-hoc test.
 
Results: A significant decrease in the CTRP-9 levels and insulin resistance, as well as a significant increase in the adiponectin levels in the training and training+omega-3 groups were observed, compared to the placebo and omega-3 groups (P<0.05).
 
Conclusion: Based on our findings, it seems that the positive effects of aerobic training alone or combined with omega-3 supplementation are partially exerted by increased and decreased adiponectin and CTRP-9 levels, respectively. Furthermore, omega-3 supplementation can increase the effectiveness of aerobic training by modulating CTRP-9 and adiponectin levels.
 

Keywords


Open Access Policy: This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/

1. Ruiz-Ojeda FJ, Olza J, Gil Á, Aguilera CM. Oxidative Stress and Inflammation in Obesity and Metabolic Syndrome. InObesity. 2018; (pp. 1-15). Academic Press.
https://doi.org/10.1016/B978-0-12-812504-5.00001-5
 
2. Hotamisligil GS. Inflammation and metabolic disorders. Nature. 2006; 444(7121):860-7. doi: 10.1038/nature05485. [PubMed: 17167474].
https://doi.org/10.1038/nature05485
PMid:17167474
 
3. Gnacińska M, Małgorzewicz S, Stojek M, Łysiak-Szydłowska W, Sworczak K. Role of adipokines in complications related to obesity. A review. Adv Med Sci. 2009; 54(2):150-7. doi: 10.2478/v10039-009-0035-2. [PubMed: 19875356].
https://doi.org/10.2478/v10039-009-0035-2
PMid:19875356
 
4. Kadowaki T, Yamauchi T, Kubota N, Hara K, Ueki K, Tobe K. Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J Clin Invest. 2006; 116(7):1784-92. doi: 10.1172/JCI29126. [PubMed: 16823476].
https://doi.org/10.1172/JCI29126
PMid:16823476 PMCid:PMC1483172
 
5. Cheng KK, Lam KS, Wang B, Xu A. Signaling mechanisms underlying the insulin-sensitizing effects of adiponectin. Best Pract Res Clin Endocrinol Metab. 2014; 28(1):3-13. doi: 10.1016/j.beem.2013.06.006. [PubMed: 24417941].
https://doi.org/10.1016/j.beem.2013.06.006
PMid:24417941
 
6. Shimada K, Miyazaki T, Daida H. Adiponectin and atherosclerotic disease. Clin Chim Acta. 2004; 344(1-2):1-2. doi: 10.1016/j.cccn.2004.02.020. [PubMed: 15149866].
https://doi.org/10.1016/j.cccn.2004.02.020
PMid:15149866
 
7. Ghai R, Waters P, Roumenina LT, Gadjeva M, Kojouharova MS, Reid KB, Sim RB, Kishore U. C1q and its growing family. Immunobiology. 2007; 212(4-5):253-66. doi: 10.1016/j.imbio.2006.11.001. [PubMed: 17544811].
https://doi.org/10.1016/j.imbio.2006.11.001
PMid:17544811
 
8. Seldin MM, Tan SY, Wong GW. Metabolic function of the CTRP family of hormones. Rev Endocr Metab Disord. 2014; 15(2):111-23. doi: 10.1007/s11154-013-9255-7. [PubMed: 23963681].
https://doi.org/10.1007/s11154-013-9255-7
PMid:23963681 PMCid:PMC3931758
 
9. Peterson JM, Wei Z, Seldin MM, Byerly MS, Aja S, Wong GW. CTRP9 transgenic mice are protected from diet-induced obesity and metabolic dysfunction. Am J Physiol Regul Integr Comp Physiol. 2013; 305(5):522-33. doi: 10.1152/ajpregu.00110.2013. [PubMed: 23842676].
https://doi.org/10.1152/ajpregu.00110.2013
PMid:23842676 PMCid:PMC3763026
 
10. Wolf RM, Steele KE, Peterson LA, Zeng X, Jaffe AE, Schweitzer MA, et al. C1q/TNF-related protein-9 (CTRP9) levels are associated with obesity and decrease following weight loss surgery. J Clin Endocrinol Metab. 2016; 101(5):2211-7. doi: 10.1210/jc.2016-1027. [PubMed: 26982010].
https://doi.org/10.1210/jc.2016-1027
PMid:26982010 PMCid:PMC4870852
 
11. Wei Z, Lei X, Petersen PS, Aja S, Wong GW. Targeted deletion of C1q/TNF-related protein 9 increases food intake, decreases insulin sensitivity, and promotes hepatic steatosis in mice. Am J Physiol Endocrinol Metab. 2014; 306(7):779-90. doi: 10.1152/ajpendo.00593.2013. [PubMed: 24473438].
https://doi.org/10.1152/ajpendo.00593.2013
PMid:24473438 PMCid:PMC3962615
 
12. Kambara T, Ohashi K, Shibata R, Ogura Y, Maruyama S, Enomoto T, et al. CTRP9 protein protects against myocardial injury following ischemia-reperfusion through AMP-activated protein kinase (AMPK)-dependent mechanism. J Biol Chem. 2012; 287(23):18965-73. doi: 10.1074/jbc.M112.357939. [PubMed: 22514273].
https://doi.org/10.1074/jbc.M112.357939
PMid:22514273 PMCid:PMC3365930
 
13. You T, Nicklas BJ. Effects of exercise on adipokines and the metabolic syndrome. J Diabetes Res. 2008; 8(1):7-11. doi: 10.1155/2014/726861. [PubMed: 24563869].
https://doi.org/10.1155/2014/726861
PMid:24563869 PMCid:PMC3915640
 
14. Mori TA, Beilin LJ. Omega-3 fatty acids and inflammation. Curr Atheroscler Rep. 2004; 6(6):461-7. doi: 10.1007/s11883-004-0087-5. [PubMed: 15485592].
https://doi.org/10.1007/s11883-004-0087-5
PMid:15485592
 
15. Gray B, Steyn F, Davies PS, Vitetta L. Omega-3 fatty acids: a review of the effects on adiponectin and leptin and potential implications for obesity management. Eur J Clin Nutr. 2013; 67(12):1234-42. doi: 10.1038/ejcn.2013.197. [PubMed: 24129365].
https://doi.org/10.1038/ejcn.2013.197
PMid:24129365
 
16. Sheibani S, Hanachi P, Refahiat MA. Effect of aerobic exercise on serum concentration of apelin, TNFα and insulin in obese women. Iran J Basic Med Sci. 2012; 15(6):1196. doi: 10.22038/IJBMS.2012.4940. [PubMed: 23653851].
 
17. Dadash Nejad F, Gholami M, Soheili S. The effect of eight-week combined exercise training (resistance-endurance) and Omega-3 ingestion on the levels of fetuin-A and metabolic profile in obese elderly women. Daneshvar Medicine. 2019; 27(4): 35-44. [Persian].
 
18. Shanaki M, Shabani P, Goudarzi A, Omidifar A, Bashash D, Emamgholipour S. The C1q/TNF-related proteins (CTRPs) in pathogenesis of obesity-related metabolic disorders: Focus on type 2 diabetes and cardiovascular diseases. Life Sciences. 2020: 117913. doi: 10.1016/j.lfs.2020.117913.
https://doi.org/10.1016/j.lfs.2020.117913
PMid:32526287
 
19. Wong GW, Krawczyk SA, Kitidis‐Mitrokostas C, Ge G, Spooner E, Hug C, et al. Identification and characterization of CTRP9, a novel secreted glycoprotein, from adipose tissue that reduces serum glucose in mice and forms heterotrimers with adiponectin. FASEB J. 2009; 23(1):241-58. doi: 10.1096/fj.08-114991. [PubMed: 18787108].
https://doi.org/10.1096/fj.08-114991
PMid:18787108 PMCid:PMC2626616
 
20. Hasegawa N, Fujie S, Horii N, Uchida M, Kurihara T, Sanada K, et al. Aerobic exercise training-induced changes in serum C1q/TNF-related protein levels are associated with reduced arterial stiffness in middle-aged and older adults. Am J Physiol Regul Integr Comp Physiol. 2018; 314(1): 94-101. doi: 10.1152/ajpregu.00212.2017. [PubMed: 29070503].
https://doi.org/10.1152/ajpregu.00212.2017
PMid:29070503
 
21. Moradi N, Fadaei R, Emamgholipour S, Kazemian E, Panahi G, Vahedi S, Saed L, Fallah S. Association of circulating CTRP9 with soluble adhesion molecules and inflammatory markers in patients with type 2 diabetes mellitus and coronary artery disease. PloS one. 2018; 13(1): 0192159. doi: 10.1371/journal. pone.0192159. [PubMed: 29381773].
https://doi.org/10.1371/journal.pone.0192159
PMid:29381773 PMCid:PMC5790264
 
22. Jia Y, Luo X, Ji Y, Xie J, Jiang H, Fu M, Li X. Circulating CTRP9 levels are increased in patients with newly diagnosed type 2 diabetes and correlated with insulin resistance. Diabetes research and clinical practice. 2017; 131:116-23. doi: 10.1016/j.diabres.2017.07.003. [PubMed: 28743061].
https://doi.org/10.1016/j.diabres.2017.07.003
PMid:28743061
 
23. Kim JY, Kim ES, Jeon JY, Jekal Y. Improved insulin resistance, adiponectin and liver enzymes without change in plasma vaspin level after 12 weeks of exercise training among obese male adolescents. Korean J Obes. 2011; 20(3):138-46.
https://doi.org/10.7570/kjo.2011.20.3.138
https://doi.org/10.7570/kjo.2016.25.3.138
 
24. Liu M, Liu F. Regulation of adiponectin multimerization, signaling and function. Best Pract Res Clin Endocrinol Metab. 2014; 28(1):25-31. doi: 10.1016/j.beem.2013.06.003. [PubMed: 24417943].
https://doi.org/10.1016/j.beem.2013.06.003
PMid:24417943 PMCid:PMC3893790
 
25. Yamauchi T, Iwabu M, Okada-Iwabu M, Kadowaki T. Adiponectin receptors: a review of their structure, function and how they work. Best Pract Res Clin Endocrinol Metab. 2014; 28(1):15-23. doi: 10.1016/j.beem.2013.09.003. [PubMed: 24417942].
https://doi.org/10.1016/j.beem.2013.09.003
PMid:24417942
 
26. Nassis GP, Papantakou K, Skenderi K, Triandafillopoulou M, Kavouras SA, Yannakoulia M, et al. Aerobic exercise training improves insulin sensitivity without changes in body weight, body fat, adiponectin, and inflammatory markers in overweight and obese girls. Metabolism. 2005; 54(11):1472-9. doi: 10.1016/j.metabol.2005.05.013. [PubMed: 16253636].
https://doi.org/10.1016/j.metabol.2005.05.013
PMid:16253636
 
27. Bełtowski J. Adiponectin and resistin--new hormones of white adipose tissue. Med Sci Monit. 2003; 9(2):55-61. [PubMed: 12601307].
 
28. Racil G, Ounis OB, Hammouda O, Kallel A, Zouhal H, Chamari K, et al. Effects of high vs. moderate exercise intensity during interval training on lipids and adiponectin levels in obese young females. Eur J Appl Physiol. 2013; 113(10):2531-40. doi: 10.1007/s00421-013-2689-5. [PubMed: 23824463].
https://doi.org/10.1007/s00421-013-2689-5
PMid:23824463
 
29. Piroozan F, Daryanoosh F, Jafari H, Sherafati Moghadam M. The Effect of 12-Week Exercise with Omega-3 Supplement Consumption on Serum Level Changes of Adiponectin, Leptin, and Insulin in Girls. Avicenna J Clin Med. 2015; 22 (2) :129-136. [Persian].
 
30. Khedri G, Mogharnasi M. Interaction Effect of 8-Week Aerobic Exercise and Omega-3 Fatty Acid Supplementation on Plasma Adiponectin Concentration. Zahedan J Res Med Sci. 2013; 15(3): 36-41. [Persian].
 
31. Saltevo J, Kautiainen H, Vanhala M. Gender differences in adiponectin and low-grade inflammation among individuals with normal glucose tolerance, prediabetes, and type 2 diabetes. Gender medicine. 2009; 6(3):463-70. doi.org/10.1016/j.genm.2009.09.006. [PubMed: 19850242].
https://doi.org/10.1016/j.genm.2009.09.006
PMid:19850242