Antimicrobial Susceptibility Pattern of Staphylococcus aureus Isolates Against Newly Marketed Antibiotics: A Report From Imam Reza Hospital of Mashhad, Iran

Document Type : Original Article

Authors

1 Student Research Committee, Mashhad University of Medical Sciences, Mashhad, IR Iran

2 Mashhad Medical Microbiology Student Research Group, Mashhad University of Medical Sciences, Mashhad, IR Iran

3 Microbiology Laboratory, Central Laboratory, Imam Reza Hospital, Mashhad, IR Iran

10.30483/rijm.2015.118393

Abstract

Background: Infections due to Staphylococcus aureus have long been considered as a big challenge to clinicians. The innate ability of this microorganism to develop resistance to different antibiotics, has led to the appearance of MRSA (methicillin-resistant Staphylococcus aureus) and lately VRSA (vancomycin-resistant Staphylococcus aureus) strains, which are considered as major problems for both patients and clinicians. Objectives: In this study, we tried to evaluate susceptibility pattern of S. aureus isolates against some prevalent antibiotics as well as some infrequent ones. Materials and Methods: This inquiry was performed on 238 clinical samples, collected from different wards of Imam Reza Hospital of Mashhad between 2011 and 2012, which were previously defined as S. aureus and stocked in -70°C. Kirby-Bauer’s disc diffusion was performed for the following antibiotics: quinupristin-dalfopristin, linezolid, cefoxitin and mupirocin according to EUCAST 2014 (v. 4), cotrimoxazole, doxycycline, tigecycline, oxacillin based on CLSI 2012 (M100-S22) and vancomycin according to CLSI 2007 guidelines. Results: Out of 238 samples, 5.88% were resistant to quinupristin-dalfopristin; 5.46% to linezolid; 60.92% to Co-trimoxazole; 31.93% to doxycycline; 18.90% to tigecycline; 5.04% to vancomycin; 9.24% to mupirocin; 43% to oxacillin and 46.21% of our isolates were resistant to cefoxitin. Conclusions: Coming across isolates with reduced susceptibility to quinupristin-dalfopristin and resistant to linezolid in this study are worrisome although these antibiotics are not used in our hospital. This might be a new challenge in the treatment of MRSA.

Keywords


  1. 1.Cookson B, Bonten MJ, Mackenzie FM, Skov RL, Verbrugh HA, Tacconelli E, et al. Meticillin-resistant Staphylococcus aureus (MRSA): screening and decolonisation. Int J Antimicrob Agents. 2011;37(3):195–201. doi: 10.1016/j.ijantimicag.2010.10.023. [PubMed: 21163631]

    1. Liu C, Bayer A, Cosgrove SE, Daum RS, Fridkin SK, Gorwitz RJ, et al. Clinical practice guidelines by the infectious diseases society of america for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children. Clin Infect Dis. 2011;52(3):e18–55. doi: 10.1093/cid/ciq146. [PubMed: 21208910] Arianpoor A et al. Razavi Int J Med. 2015;3(4):e31568 25
    2. Shlaes DM, Spellberg B. Overcoming the challenges to developing new antibiotics. Curr Opin Pharmacol. 2012;12(5):522–6. doi: 10.1016/j.coph.2012.06.010. [PubMed: 22832234]
    3. van Hal SJ, Fowler VG. Is it time to replace vancomycin in the treatment of methicillin-resistant Staphylococcus aureus infections? Clin Infect Dis. 2013;56(12):1779–88. doi: 10.1093/cid/cit178. [PubMed: 23511300]
    4. Askari E, Tabatabai SM, Arianpoor A, Nasab MN. VanA-positive vancomycin–resistant Staphylococcus aureus: systematic search and review of reported cases. Infect Dis Clin Prac. 2013;21(2):91–3.
    5. Rossi F, Diaz L, Wollam A, Panesso D, Zhou Y, Rincon S, et al. Transferable vancomycin resistance in a community-associated MRSA lineage. N Engl J Med. 2014;370(16):1524–31. doi: 10.1056/NEJMoa1303359. [PubMed: 24738669]
    6. Hiramatsu K. Vancomycin-resistant Staphylococcus aureus: a new model of antibiotic resistance. Lancet Infect Dis. 2001;1(3):147– 55. doi: 10.1016/S1473-3099(01)00091-3. [PubMed: 11871491]
    7. Richter SS, Diekema DJ, Heilmann KP, Dohrn CL, Crispell EK, Riahi F, et al. Activities of vancomycin, ceftaroline, and mupirocin against Staphylococcus aureus isolates collected in a 2011 national surveillance study in the United States. Antimicrob Agents Chemother. 2014;58(2):740–5. doi: 10.1128/AAC.01915-13. [PubMed: 24247138]
    8. Yu F, Lu C, Liu Y, Sun H, Shang Y, Ding Y, et al. Emergence of quinupristin/dalfopristin resistance among livestock-associated Staphylococcus aureus ST9 clinical isolates. Int J Antimicrob Agents. 2014;44(5):416–9. doi: 10.1016/j.ijantimicag.2014.06.020. [PubMed: 25218154]
    9. Askari E, Soleymani F, Arianpoor A, Tabatabai SM, Amini A, Naderinasab M. Epidemiology of mecA-Methicillin Resistant Staphylococcus aureus (MRSA) in Iran: A Systematic Review and Meta-analysis. Iran J Basic Med Sci. 2012;15(5):1010–9. [PubMed: 23493646]
    10. Sanchez Garcia M, De la Torre MA, Morales G, Pelaez B, Tolon MJ, Domingo S, et al. Clinical outbreak of linezolid-resistant Staphylococcus aureus in an intensive care unit. JAMA. 2010;303(22):2260– 4. doi: 10.1001/jama.2010.757. [PubMed: 20530779]
    11. Gu B, Kelesidis T, Tsiodras S, Hindler J, Humphries RM. The emerging problem of linezolid-resistant Staphylococcus. J Antimicrob Chemother. 2013;68(1):4–11. doi: 10.1093/jac/dks354. [PubMed: 22949625]
    12. Ruzbahani M, Rahdar HA, Babaei Z, Rezaeyan MH, Jafari M, Rezai M. Identification of Antibiotic Resistance Patterns of MethicillinResistant Staphylococcus Aureus Isolates from Patients in Selected Hospitals in Isfahan. Glob J Med Res Stud. 2014;1(2):37–40.
    13. Shahsavan S, Emaneini M, Noorazar Khoshgnab B, Khoramian B, Asadollahi P, Aligholi M, et al. A high prevalence of mupirocin and macrolide resistance determinant among Staphylococcus aureus strains isolated from burnt patients. Burns. 2012;38(3):378–82. doi: 10.1016/j.burns.2011.09.004. [PubMed: 22040930]
    14. Dibah S, Arzanlou M, Jannati E, Shapouri R. Prevalence and antimicrobial resistance pattern of methicillin resistant Staphylococcus aureus (MRSA) strains isolated from clinical specimens in Ardabil, Iran. Iran J Microbiol. 2014;6(3):163–8. [PubMed: 25870749]
    15. Rahimi F, Bouzari M, Katouli M, Pourshafie MR. Antibiotic resistance pattern of methicillin resistant and methicillin sensitive Staphylococcus aureus isolates in Tehran, Iran. Jundishapur J Microbiol. 2013;6(2):144–9.
    16. Luh KT, Hsueh PR, Teng LJ, Pan HJ, Chen YC, Lu JJ, et al. Quinupristin-dalfopristin resistance among gram-positive bacteria in Taiwan. Antimicrob Agents Chemother. 2000;44(12):3374–80. [PubMed: 11083643]
    17. Kali A, Stephen S, Umadevi S, Kumar S. Detection of quinupristindalfopristin resistance in methicillin-resistant Staphylococcus aureus in South India. Indian J Pathol Microbiol. 2013;56(1):73–4. doi: 10.4103/0377-4929.116164. [PubMed: 23924572]
    18. Hassanzadeh S, Pourmand MR, Hadadi A, Nourijeylani K, Yousefi M, Mashhadi R, et al. Frequency and Antimicrobial Resistance Patterns of Methicillin-Resistant Staphylococcus aureus in Tehran. J Med Bacteriol. 2013;2(3, 4):41–6.
    19. Yin LY, Lazzarini L, Li F, Stevens CM, Calhoun JH. Comparative evaluation of tigecycline and vancomycin, with and without rifampicin, in the treatment of methicillin-resistant Staphylococcus aureus experimental osteomyelitis in a rabbit model. J Antimicrob Chemother. 2005;55(6):995–1002. doi: 10.1093/jac/dki109. [PubMed: 15857944]
    20. Florescu I, Beuran M, Dimov R, Razbadauskas A, Bochan M, Fichev G, et al. Efficacy and safety of tigecycline compared with vancomycin or linezolid for treatment of serious infections with methicillin-resistant Staphylococcus aureus or vancomycinresistant enterococci: a Phase 3, multicentre, double-blind, randomized study. J Antimicrob Chemother. 2008;62 Suppl 1:i17–28. doi: 10.1093/jac/dkn250. [PubMed: 18684703]
    21. Verkade EJ, Verhulst CJ, Huijsdens XW, Kluytmans JA. In vitro activity of tigecycline against methicillin-resistant Staphylococcus aureus, including livestock-associated strains. Eur J Clin Microbiol Infect Dis. 2010;29(5):503–7. doi: 10.1007/s10096-010-0886-2. [PubMed: 20186450]