Background: Respiratory distress syndrome (RDS) is the most common respiratory disorder of premature infants and leading cause of mortality. The main progress in RDS management is attributable to prescription of surfactant for fastening pulmonary maturation. Objectives: In this study we aimed to compare nasal continuous positive airway pressure (NCPAP) with nasal intermittent positive pressure ventilation (NIPPV) in infants with RDS lower than 1800 gr of birthweight. Methods: In this randomized clinical trial, infants with confirmed diagnosis of RDS who underwent treatment with surfactant and mechanical ventilation were randomly allocated to two NCPAP and NIPPV groups. Duration of hospitalization, oxygen therapy, respiratory protection, need for re-intubation and complications were recorded in a pre-designed checklist. Results: Eventually 60 (37 males and 23 females) infants with mean gestational ages of 31.73±1.72 weeks in NCPAP and 32.6±1.92 weeks in NIPPV group underwent analysis (p=0.096). Infants in NCPAP group underwent mechanical ventilation for a mean duration of 3.3±1.7 days; while it was 2.4±0.96 days for infants in NIPPV group (p=0.026). The mean received doses of surfactant was 2.36±0.66 in NCPAP and 1.9±0.25 in NIPPV group (p=0.005). After intervention, infants in NCPAP group had a mean arterial oxygen saturation of 91.36±3.03%; while it was 91.3±4.03% for those in NIPPV group (p=0.669). Mean arterial oxygen pressure was 67.6±6.91 mmHg in NCPAP group and 75.2±7.2 mmHg in NIPPV group after intervention (p=0.045). Conclusion: We found that NIPPV is more effective than NCPAP in decreasing need for reintubation and invasive mechanical ventilation in premature infants with respiratory distress syndrome and it also shortens the duration of hospitalization.
Fanaroff AA, Martin RJ. Neonatal-perinatal medicine: diseases of thefetus and infant. 8thed. New York: Mosby; 2012. P. 1097-98.
Najafian B, Khosravi MH, Setayesh F, Shohrati M. Comparing the effect of inhaler N-acetyl cysteine and intravenous dexamethasone on respiratory distress syndrome in premature infants: a randomized clinical trial. Thrita. 2017;6(1):e46268. doi: 10.5812/thrita.46268.
Sweet DG, Carnielli V, Greisen G, Hallman M, Ozek E, Plavka R, et al. European consensus guidelines on the management of neonatal respiratory distress syndrome in preterm infants-2013 update. Neonatology. 2013;103(4):353-68. doi: 10.1159/000349928. [PubMed: 23736015].
Stevens TP, Blennow M, Myers EH, Soll R. Early surfactant administration with brief ventilation vs. selective surfactant and continued mechanical ventilation for preterm infants with or at risk for respiratory distress syndrome. Cochrane Database Syst Rev. 2007;4:CD003063. doi: 10.1002/14651858. CD003063.pub3. [PubMed: 17943779].
Najafian B, Karimi-Sari H, Khosravi MH, Nikjoo N, Amin S, Shohrati M. Comparison of efficacy and safety of two available natural surfactants in Iran, Curosurf and Survanta in treatment of neonatal respiratory distress syndrome: A randomized clinical trial. Contemp Clin Trials Commun. 2016;3:55-9. doi: 10.1016/j.conctc.2016.04.003. [PubMed: 29736457].
Goldsmith JP, Karotkin E. Assisted ventilation of the neonate. New York: Elsevier Health Sciences; 2010
Najafian B, Esmaeili B, Khosravi MH. Comparison of fentanyl and midazolam for the sedation of infants under mechanical ventilation; a randomized clinical trial. Hosp Pract Res. 2017;2(3):63-7. doi: 10.15171/hpr.2017.17.
Najafian B, Eyvazloo H, Khosravi MH. Effects of different doses of fentanyl on the sedation of infants under mechanical ventilation; a randomized clinical trial. Hosp Pract Res. 2017;2(4):109-12. doi: 10.15171/hpr.2017.26.
Zaharie G, Ion DA, Schmidt N, Popa M, Kudor-Szabadi L, Zaharie T. Prophylactic CPAP versus therapeutic CPAP in preterm newborns of 28-32 gestational weeks. Pneumologia. 2007;57(1):34-7. [PubMed: 18543659].
Miksch RM, Armbrust S, Pahnke J, Fusch C. Outcome of very low birthweight infants after introducing a new standard regime with the early use of nasal CPAP. Eur J Pediatr. 2008;167(8):909-16. doi: 10.1007/s00431-007-0646-1. [PubMed: 18172681].
Ho JJ, Henderson‐Smart DJ, Davis PG. Early versus delayed initiation of continuous distending pressure for respiratory distress syndrome in preterm infants. Cochrane Database Syst Rev. 2002;2:CD002975. doi: 10.1002/14651858.CD002975. [PubMed: 12076463].
Burns KE, Meade MO, Premji A, Adhikari NK. Noninvasive ventilation as a weaning strategy for mechanical ventilation in adults with respiratory failure: a Cochrane systematic review. CMAJ. 2014;186(3):E112-22. doi: 10.1503/cmaj.130974. [PubMed: 24324020].
Nascimento RM, Ferreira AL, Coutinho AC, Santos Veríssimo RC. The frequency of nasal injury in newborns due to the use of continuous positive airway pressure with prongs. Rev Lat Am Enfermagem. 2009;17(4):489-94. doi: 10.1590/s0104- 11692009000400009. [PubMed: 19820855].
Reyburn B, Li M, Metcalfe DB, Kroll NJ, Alvord J, Wint A, et al. Nasal ventilation alters mesenchymal cell turnover and improves alveolarization in preterm lambs. Am J Respir Crit Care Med. 2008;178(4):407-18. doi: 10.1164/rccm.200802- 359OC. [PubMed: 18556628].
Bisceglia M, Belcastro A, Poerio V, Raimondi F, Mesuraca L, Crugliano C, et al. A comparison of nasal intermittent versus continuous positive pressure delivery for the treatment of moderate respiratory syndrome in preterm infants. Minerva Pediatr. 2007;59(2):91-5. [PubMed: 17404558].
Kugelman A, Feferkorn I, Riskin A, Chistyakov I, Kaufman B, Bader D. Nasal intermittent mandatory ventilation versus nasal continuous positive airway pressure for respiratory distress syndrome: a randomized, controlled, prospective study. J Pediatr. 2007;150(5):521-6. doi: 10.1016/j.jpeds. 2007.01.032. [PubMed: 17452229].
Barrington KJ, Bull D, Finer NN. Randomized trial of nasal synchronized intermittent mandatory ventilation compared with continuous positive airway pressure after extubation of very low birth weight infants. Pediatrics. 2001;107(4):638-41. doi: 10.1542/peds.107.4.638. [PubMed: 11335736].
Khalaf MN, Brodsky N, Hurley J, Bhandari V. A prospective randomized, controlled trial comparing synchronized nasal intermittent positive pressure ventilation versus nasal continuous positive airway pressure as modes of extubation. Pediatrics. 2001;108(1):13-7. doi: 10.1542/peds.108.1.13. [PubMed: 11433048].
Khorana M, Paradeevisut H, Sangtawesin V, Kanjanapatanakul W, Chotigeat U, Ayutthaya J. A randomized trial of non- synchronized Nasopharyngeal Intermittent Mandatory Ventilation (nsNIMV) vs. Nasal Continuous Positive Airway Pressure (NCPAP) in the prevention of extubation failure in pre-term <1,500 grams. J Med Assoc Thailand. 2008;91(Suppl 3):S136-42. [PubMed: 19253509].
Gao W, Tan S, Chen Y, Zhang Y, Wang Y. Randomized trail of nasal synchronized intermittent mandatory ventilation compared with nasal continuous positive airway pressure in preterm infants with respiratory distress syndrome. Zhongguo Dang Dai Er Ke Za Zhi. 2010;12(7):524-6. [PubMed: 20637147].
Moretti C, Giannini L, Fassi C, Gizzi C, Papoff P, Colarizi P. Nasal flow‐synchronized intermittent positive pressure ventilation to facilitate weaning in very low‐birthweight infants: Unmasked randomized controlled trial. Pediatr Int. 2008; 50(1):85-91. doi: 10.1111/j.1442-200X.2007.02525.x. [PubMed: 18279212].
O'Brien K, Campbell C, Brown L, Wenger L, Shah V. Infant flow biphasic nasal continuous positive airway pressure (BP- NCPAP) vs. infant flow NCPAP for the facilitation of extubation in infants'≤ 1,250 grams: a randomized controlled trial. BMC Pediatr. 2012;12(1):43. doi: 10.1186/1471-2431-12-43. [PubMed: 22475409].
Kirpalani H, Millar D, Lemyre B, Yoder BA, Chiu A, Roberts RS. A trial comparing noninvasive ventilation strategies in preterm infants. N Engl J Med. 2013;369(7):611-20. doi: 10.1056/ NEJMoa1214533. [PubMed: 23944299].
Najafian, B., Ansari-Benam, I., Torkaman, M., & Khosravi, M. H. (2019). Comparing the Efficacy of NCPAP and NIPPV in Infants with RDS after Extubation; A Randomized Clinical Trial. Razavi International Journal of Medicine, 7(2), 31-35. doi: 10.30483/rijm.2019.118320
MLA
Bita Najafian; Iman Ansari-Benam; Mohammad Torkaman; Mohammad Hossein Khosravi. "Comparing the Efficacy of NCPAP and NIPPV in Infants with RDS after Extubation; A Randomized Clinical Trial". Razavi International Journal of Medicine, 7, 2, 2019, 31-35. doi: 10.30483/rijm.2019.118320
HARVARD
Najafian, B., Ansari-Benam, I., Torkaman, M., Khosravi, M. H. (2019). 'Comparing the Efficacy of NCPAP and NIPPV in Infants with RDS after Extubation; A Randomized Clinical Trial', Razavi International Journal of Medicine, 7(2), pp. 31-35. doi: 10.30483/rijm.2019.118320
VANCOUVER
Najafian, B., Ansari-Benam, I., Torkaman, M., Khosravi, M. H. Comparing the Efficacy of NCPAP and NIPPV in Infants with RDS after Extubation; A Randomized Clinical Trial. Razavi International Journal of Medicine, 2019; 7(2): 31-35. doi: 10.30483/rijm.2019.118320