Confirmatory Factor Analysis of Persian Version of Depression, Anxiety and Stress (DASS-42): Non-Clinical Sample


1 PhD Candidate of Counseling, Department of Educational Sciences and Psychology, Alzahra University, Tehran, Iran

2 Associate Professor of Family Research Institute, Shahid Beheshti University, Tehran, Iran

3 Lecturer and Psychologist, PhD of Counseling, Family Research Institute, Shahid Beheshti University, Tehran, Iran

4 Ph.D in Health Psychology, Department of Health Psychology, Tehran Institute of Psychiatry, School of Behavioral Sciences and Mental Health, Iran University of Medical Sciences, Tehran, Iran


Abstract Background: Based on historical viewpoint, relationship among depression, anxiety and stress attracted clinical and theoretical consideration. Despite the relative overlap of these psychological disorders in general, these three syndromes are distinctive in terms of theoretically and conceptually aspects. Objectives: The aim of current study is investigation confirmatory factor analysis and psychometric characteristics of Iranian version of depression, anxiety and stress scale (DASS-42) in student’s population. Methods: The student sample n = 664 studied in current study. The method of estimation Weighted Least Squares (WLS) used to investigate the confirmatory factor structure of this sample. NNFI, RMR, RMSEA, CFI, AGFI, GFI, ECVI, X2, X2 / df, were used to assess the adequacy of model fitness with data. In this study, MMPI -2 questionnaire, Cattell anxiety scale, and Beck depression inventory were used as criterion validity. Results: The results suggest DASS-42 scale had satisfactory internal consistency, test-retest validity and concurrent reliability. The results showed three factors with first class fitted better with data and DASS-42 scale had desirable construct validity of student sample. Conclusions: The resultsshowed confirmatory factor structure and validity of this tool for application usages and clinical diagnosis are acceptable.


  1. 1.Clark LA, Watson D. Tripartite model of anxiety and depression: psychometric evidence and taxonomic implications. J Abnorm Psychol. 1991;100(3):316–36. doi: 10.1037/0021-843X.100.3.316. [PubMed: 1918611].

    1. de Heer EW, Gerrits MM, Beekman AT, Dekker J, van Marwijk HW, de Waal MW, et al. The association of depression and anxiety with pain: a study from NESDA. PLoS One. 2014;9(10):e106907. doi: 10.1371/journal.pone.0106907. [PubMed: 25330004].
    2. Lovibond PF. Long-term stability of depression, anxiety, and stress syndromes. J Abnorm Psychol. 1998;107(3):520–6. doi: 10.1037/0021- 843X.107.3.520. [PubMed: 9715586].
    3. Monroe SM, Simons AD. Diathesis-stress theories in the context of life stress research: implications for the depressive disorders. Psychol Bull. 1991;110(3):406–25. doi: 10.1037/0033-2909.110.3.406. [PubMed: 1758917].
    4. Szabo M. The short version of the Depression Anxiety Stress Scales (DASS-21): factor structure in a young adolescent sample. J Adolesc. 2010;33(1):1–8. doi: 10.1016/j.adolescence.2009.05.014. [PubMed: 19560196].
    5. Cummings CM, Caporino NE, Kendall PC. Comorbidity of anxiety and depression in children and adolescents: 20 years after. Psychol Bull. 2014;140(3):816–45. doi: 10.1037/a0034733. [PubMed: 24219155].
    6. Webster S, Hawley R, Lopez V. The factor structure of the Thai version of the Depression Anxiety and Stress Scales (Thai DASS-42) and its application in a community sample of Thai women living in Sydney, Australia. J Nurs Educ Pract. 2013;3(11):133–41. doi: 10.5430/jnep.v3n11p133.
    7. Bayram N, Bilgel N. The prevalence and socio-demographic correlations of depression, anxiety and stress among a group of university students. Soc Psychiatry Psychiatr Epidemiol. 2008;43(8):667–72. doi: 10.1007/s00127-008-0345-x. [PubMed: 18398558].
    8. Watson D, Weber K, Assenheimer JS, Clark LA, Strauss ME, McCormick RA. Testing a tripartite model: I. Evaluating the convergent and discriminant validity of anxiety and depression symptom scales. J Abnorm Psychol. 1995;104(1):3–14. doi: 10.1037/0021-843X.104.1.3. [PubMed: 7897050]. 6 Razavi Int J Med. 2017; 5(4):e12021. Habibi M et al.
    9. Lovibond PF, Lovibond SH. The structure of negative emotional states: comparison of the Depression Anxiety Stress Scales (DASS) with the Beck Depression and Anxiety Inventories. Behav Res Ther. 1995;33(3):335–43. doi: 10.1016/0005-7967(94)00075-U. [PubMed: 7726811].
    10. Oei TP, Sawang S, Goh YW, Mukhtar F. Using the Depression Anxiety Stress Scale 21 (DASS-21) across cultures. Int J Psychol. 2013;48(6):1018– 29. doi: 10.1080/00207594.2012.755535. [PubMed: 23425257].
    11. Shea TL, Tennant A, Pallant JF. Rasch model analysis of the Depression, Anxiety and Stress Scales (DASS). BMC Psychiatry. 2009;9:21. doi: 10.1186/1471-244X-9-21. [PubMed: 19426512].
    12. Vignola RC, Tucci AM. Adaptation and validation of the depression, anxiety and stress scale (DASS) to Brazilian Portuguese. J Affect Disord. 2014;155:104–9. doi: 10.1016/j.jad.2013.10.031. [PubMed: 24238871].
    13. Afzali A, Delavar A, Borjali A, Mirzamani M. Characteristics of the psychometric test DASS-42 Based on a sample of high school’s student in Kermanshah [In Persian]. J Behav Sci. 2007;5(2):92–81. 15. Asghari Moghaddam M, Saed F, Dibajnia P, Zanganeh J. A preliminary study of the validity and reliability of depression, anxiety and stress (Dass) In non-clinical samples [In Persian]. Acad J Behav. 2008;15(31):38–23.
    14. Meuti V, Marini I, Grillo A, Lauriola M, Leone C, Giacchetti N, et al. MMPI-2: cluster analysis of personality profiles in perinatal depression-preliminary evidence. ScientificWorldJournal. 2014;2014:964210. doi: 10.1155/2014/964210. [PubMed: 25574499].
    15. Gottfried E, Bodell L, Carbonell J, Joiner T. The clinical utility of the MMPI-2-RF Suicidal/Death Ideation Scale. Psychol Assess. 2014;26(4):1205–11. doi: 10.1037/pas0000017. [PubMed: 25068910]. 18. Sharifi P. Theories of Intelligence and Personality [In Persian]. Tehran: Sokhan Publication; 1997. pp. 283–91.
    16. Dehghani M, Ashori A, Habibi M, Khatibi M. Standardization and psychometric properties of minesota Multiphasic personality inventory (MMPI-2) [In Persian]. J Psychol. 2010;14(3):299–318. 20. Karraz ZH. Mental illnesses. Mahmoud Mansour and Parirokh prosecutor. fourth ed. Tehran: Roshd; 2007.
    17. Ganji H. Psychometric (theoretical foundations of psychological tests). Tehran: Publication of Savalan; 2000.
    18. Salari Far MH, Poor Etemad HR. The relationship between meta cognitive beliefs to depression and anxiety disorders [In Persian. J Lorestan Univ Med Sci. 2011;13(4):29–38.
    19. Prasko J, Ociskova M, Grambal A, Sigmundova Z, Kasalova P, Marackova M, et al. Personality features, dissociation, self-stigma, hope, and the complex treatment of depressive disorder. Neuropsychiatr Dis Treat. 2016;12:2539–52. doi: 10.2147/NDT.S117037. [PubMed: 27785031].
    20. Al-Turkait FA, Ohaeri JU. Dimensional and hierarchical models of depression using the Beck Depression Inventory-II in an Arab college student sample. BMC Psychiatry. 2010;10:60. doi: 10.1186/1471-244X-10- 60. [PubMed: 20670449].
    21. Gharraee B. Determine the identity and status of its relationship with identity styles and depression in adolescents. University of Medical Sciences; 2000.
    22. Tran TD, Tran T, Fisher J. Validation of the depression anxiety stress scales (DASS) 21 as a screening instrument for depression and anxiety in a rural community-based cohort of northern Vietnamese women. BMC Psychiatry. 2013;13:24. doi: 10.1186/1471-244X-13-24. [PubMed: 23311374].
    23. Covic T, Cumming SR, Pallant JF, Manolios N, Emery P, Conaghan PG, et al. Depression and anxiety in patients with rheumatoid arthritis: prevalence rates based on a comparison of the Depression, Anxiety and Stress Scale (DASS) and the hospital, Anxiety and Depression Scale (HADS). BMC Psychiatry. 2012;12:6. doi: 10.1186/1471-244X-12-6. [PubMed: 22269280].
    24. Su L, Daniels MJ. Bayesian modeling of the covariance structure for irregular longitudinal data using the partial autocorrelation function. Stat Med. 2015;34(12):2004–18. doi: 10.1002/sim.6465. [PubMed: 25762065].
    25. Revicki DA, Cook KF, Amtmann D, Harnam N, Chen WH, Keefe FJ. Exploratory and confirmatory factor analysis of the PROMIS pain quality item bank. Qual Life Res. 2014;23(1):245–55. doi: 10.1007/s11136-013- 0467-9. [PubMed: 23836435].
    26. Cai L, Hansen M. Limited-information goodness-of-fit testing of hierarchical item factor models. Br J Math Stat Psychol. 2013;66(2):245–76. doi: 10.1111/j.2044-8317.2012.02050.x. [PubMed: 22642552].
    27. Zanca F, Hillis SL, Claus F, Van Ongeval C, Celis V, Provoost V, et al. Correlation of free-response and receiver-operating-characteristic areaunder-the-curve estimates: results from independently conducted FROCROC studies in mammography. Med Phys. 2012;39(10):5917–29. doi: 10.1118/1.4747262. [PubMed: 23039631].
    28. Guo B, Perron BE, Gillespie DF. A Systematic Review of Structural Equation Modelling in Social Work Research. Br J Soc Work. 2009;39(8):1556–74. doi: 10.1093/bjsw/bcn101. [PubMed: 25477696].
    29. Chen Z, Zhang G, Li J. Goodness-of-fit test for meta-analysis. Sci Rep. 2015;5:16983. doi: 10.1038/srep16983. [PubMed: 26592212].