The Effect of Histone Hyperacetylation on Viability of Basal-Like Breast Cancer Cells MDA-MB-231

Authors

Department of Biochemistry, Zanjan University of Medical Sciences, Zanjan, Iran

Abstract

Background: The Basal-Like breast cancer, is always known for lack of expression of estrogen receptor (ER), progesterone receptor (PR) and as well, absence of epidermal growth factor receptor 2 (HER2) gene amplification. Improper expression pattern of ER, PR, and Her2, makes Basal-Like breast tumors resistant to the current hormonal and anti HER2 treatments. In recent decades, several studies have been conducted to investigate the regulatory role of chemical modifications of core histones in gene expression. Their results have shown that histone acetylation is involved in regulation of cell survival. Acetylation of core histones is regulated by the epigenetic-modifying enzymes named Histone Deacetylases (HDACs). As a new approach to control the viability of breast tumor cells resistant to the hormonal and anti-HER2 treatments, we have targeted the HDACs. Using Trichostatin A (TSA) as a known HDACs inhibitor, we have tried to hyperacetylate the core histones of MDA-MB-231 cells as an in vitro model of Basal-Like breast tumors. Then we have investigated the effect of histone hyperacetylation on viability of MDA-MB-231 cells.

Methods: MDA-MB-231 cells were cultured in RPMI 1640 medium containing 10% fetal bovine serum (FBS) and were incubated at 37°C, in a humidified incubator with 5% CO2 atmosphere. Then cells were treated with different concentrations of TSA including: 50, 100, 200, 400, 800 and 1000 nM or control (1% DMSO). After 24 and 48 hours, viability of cells was evaluated by MTT assay.

Results: After 24 and 48h exposure to different concentrations of TSA, MDA-MB-231 cells showed a maximum tolerable dose. At higher concentrations, TSA decreased the percentage of cell viability through a time-dose dependent manner. IC50 value for 48h treatment was 600 nM.

Conclusions: Our results indicate that HDACs inhibition and subsequently hyperacetylation of histones, leads to cytotoxic effects on breast tumor cells resistant to the current treatments. Following this pilot research we are trying to suggest molecular mechanisms underlying the anti-proliferative effects triggered by HDACs inhibition.

Keywords


Open Access Policy: This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/

1. Nelson HD, Zakher B, Cantor A, Fu R, Griffin J, O'Meara ES, et al. Risk factors for breast cancer for women aged 40 to 49 years: a systematic review and meta-analysis. Ann Intern Med. 2012;156(9):635-48. [PubMed: 22547473].
https://doi.org/10.7326/0003-4819-156-9-201205010-00006
PMid:22547473 PMCid:PMC3561467
 
2. Brenton JD, Carey LA, Ahmed AA, Caldas C. Molecular classification and molecular forecasting of breast cancer: ready for clinical application?. J Clin Oncol. 2005;23(29):7350-60. [PubMed: 16145060].
https://doi.org/10.1200/JCO.2005.03.3845
PMid:16145060
 
3. Nielsen TO, Hsu FD, Jensen K, Cheang M, Karaca G, Hu Z, et al. Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin Cancer Res. 2004;10(16):5367-74. [PubMed: 15328174].
https://doi.org/10.1158/1078-0432.CCR-04-0220
PMid:15328174
 
4. Livasy CA, Karaca G, Nanda R, Tretiakova MS, Olopade OI, Moore DT, et al. Phenotypic evaluation of the basal-like subtype of invasive breast carcinoma. Mod Pathol. 2006;19(2):264-71. [PubMed: 16341146].
https://doi.org/10.1038/modpathol.3800528
PMid:16341146
 
5. Subik K, Lee JF, Baxter L, Strzepek T, Costello D, Crowley P, et al. The Expression Patterns of ER, PR, HER2, CK5/6, EGFR, Ki-67 and AR by Immunohistochemical Analysis in Breast Cancer Cell Lines. Breast Cancer (Auckl). 2010;4:35-41. [PubMed: 20697531].
https://doi.org/10.1177/117822341000400004
 
6. Onitilo AA, Engel JM, Greenlee RT, Mukesh BN. Breast cancer subtypes based on ER/PR and Her2 expression: comparison of clinicopathologic features and survival. Clin Med Res. 2009;7(1-2):4-13. [PubMed: 19574486].
https://doi.org/10.3121/cmr.2009.825
PMid:19574486 PMCid:PMC2705275
 
7. Early Breast Cancer Trialists' Collaborative G. Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet. 2005;365(9472):1687-717. [PubMed: 15894097].
https://doi.org/10.1016/S0140-6736(05)66544-0
PMid:15894097
 
8. Hudis CA. Trastuzumab-mechanism of action and use in clinical practice. N Engl J Med. 2007;357(1):39-51. [PubMed: 17611206].
https://doi.org/10.1056/NEJMra043186
PMid:17611206
 
9. Rakha EA, Reis-Filho JS, Ellis IO. Basal-like breast cancer: a critical review. J Clin Oncol. 2008;26(15):2568-81. [PubMed: 18487574].
https://doi.org/10.1200/JCO.2007.13.1748
PMid:18487574
 
10. Haberland M, Montgomery RL, Olson EN. The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet. 2009;10(1):32-42. [PubMed: 19065135].
https://doi.org/10.1038/nrg2485
PMid:19065135 PMCid:PMC3215088
 
11. Sarkar S, Longacre M, Tatur N, Heerboth S, Lapinska K. Histone deacetylases (HDACs): Function, mechanism, & inhibition. Encyclopedia Analytical Chem. 2014.
 
12. Zentner GE, Henikoff S. Regulation of nucleosome dynamics by histone modifications. Nat Struct Mol Biol. 2013;20(3):259-66. [PubMed: 23463310].
https://doi.org/10.1038/nsmb.2470
PMid:23463310
 
13. Ahmad K, Henikoff S. Epigenetic consequences of nucleosome dynamics. Cell. 2002;111(3):281-4. [PubMed: 12419239].
https://doi.org/10.1016/S0092-8674(02)01081-4
PMid:12419239
 
14. Itazaki H, Nagashima K, Sugita K, Yoshida H, Kawamura Y, Yasuda Y, et al. Isolation and structural elucidation of new cyclotetrapeptides, trapoxins A and B, having detransformation activities as antitumor agents. J Antibiot (Tokyo). 1990;43(12):1524-32. [PubMed: 2276972].
https://doi.org/10.7164/antibiotics.43.1524
PMid:2276972
 
15. Hoshikawa Y, Kijima M, Yoshida M, Beppu T. Expression of differentiation-related markers in teratocarcinoma cells via histone hyperacetylation by trichostatin A. Agricultural Biological Chem. 1991;55(6):1491-5.
https://doi.org/10.1271/bbb1961.55.1491
https://doi.org/10.1080/00021369.1991.10870799
 
16. Hoshikawa Y, Kwon HJ, Yoshida M, Horinouchi S, Beppu T. Trichostatin A induces morphological changes and gelsolin expression by inhibiting histone deacetylase in human carcinoma cell lines. Exp Cell Res. 1994;214(1):189-97. [PubMed: 8082721].
https://doi.org/10.1006/excr.1994.1248
PMid:8082721
 
17. Sugita K, Koizumi K, Yoshida H. Morphological reversion of sistransformed NIH3T3 cells by trichostatin A. Cancer Res. 1992;52(1):168- 72. [PubMed: 1727377].
 
18. Yoshida M, Hoshikawa Y, Koseki K, Mori K, Beppu T. Structural specificity for biological activity of trichostatin A, a specific inhibitor of mammalian cell cycle with potent differentiation-inducing activity in Friend leukemia cells. J Antibiot (Tokyo). 1990;43(9):1101-6. [PubMed: 2211374].
https://doi.org/10.7164/antibiotics.43.1101
PMid:2211374
 
19. Yoshida M, Nomura S, Beppu T. Effects of trichostatins on differentiation of murine erythroleukemia cells. Cancer Res. 1987;47(14):3688-91. [PubMed: 2439196].
 
20. Yoshida M, Beppu T. Reversible arrest of proliferation of rat 3Y1 fibroblasts in both the G1 and G2 phases by trichostatin A. Experimental Cell Res. 1988;177(1):122-31.
https://doi.org/10.1016/0014-4827(88)90030-4
PMid:3134246
 
21. Medina V, Edmonds B, Young GP, James R, Appleton S, Zalewski PD. Induction of caspase-3 protease activity and apoptosis by butyrate and trichostatin A (inhibitors of histone deacetylase): dependence on protein synthesis and synergy with a mitochondrial/cytochrome c-dependent pathway. Cancer Res. 1997;57(17):3697-707. [PubMed: 9288776].
 
22. Glozak MA, Seto E. Histone deacetylases and cancer. Oncogene. 2007;26(37):5420-32. [PubMed: 17694083].
https://doi.org/10.1038/sj.onc.1210610
PMid:17694083
 
23. Eot-Houllier G, Fulcrand G, Magnaghi-Jaulin L, Jaulin C. Histone deacetylase inhibitors and genomic instability. Cancer Lett. 2009;274(2):169-76. [PubMed: 18635312]. 4 Razavi Int J Med. 2017; 5(2):e55455. Rahimian A and Mellati A
https://doi.org/10.1016/j.canlet.2008.06.005
PMid:18635312
 
24. Vanhaecke T, Papeleu P, Elaut G, Rogiers V. Trichostatin A-like hydroxamate histone deacetylase inhibitors as therapeutic agents: toxicological point of view. Curr Med Chem. 2004;11(12):1629-43. [PubMed: 15180568].
https://doi.org/10.2174/0929867043365099
PMid:15180568
 
25. Chavez KJ, Garimella SV, Lipkowitz S. Triple negative breast cancer cell lines: one tool in the search for better treatment of triple negative breast cancer. Breast Dis. 2010;32(1-2):35-48. [PubMed: 21778573].
https://doi.org/10.3233/BD-2010-0307
PMid:21778573 PMCid:PMC3532890
 
26. Rasheed WK, Johnstone RW, Prince HM. Histone deacetylase inhibitors in cancer therapy. Expert Opin Investig Drugs. 2007;16(5):659- 78. [PubMed: 17461739].
https://doi.org/10.1517/13543784.16.5.659
PMid:17461739
 
27. Marchion D, Munster P. Development of histone deacetylase inhibitors for cancer treatment. Expert Rev Anticancer Ther. 2007;7(4):583-98. [PubMed: 17428177].
https://doi.org/10.1586/14737140.7.4.583
PMid:17428177
 
28. Sotiriou C, Neo SY, McShane LM, Korn EL, Long PM, Jazaeri A, et al. Breast cancer classification and prognosis based on gene expression profiles from a population-based study. Proc Natl Acad Sci U S A. 2003;100(18):10393-8. [PubMed: 12917485].
https://doi.org/10.1073/pnas.1732912100
PMid:12917485 PMCid:PMC193572
 
29. Carey LA, Perou CM, Livasy CA, Dressler LG, Cowan D, Conway K, et al. Race, breast cancer subtypes, and survival in the Carolina Breast Cancer Study.JAMA. 2006;295(21):2492-502. [PubMed: 16757721].
https://doi.org/10.1001/jama.295.21.2492
PMid:16757721
 
30. Foulkes WD, Brunet JS, Stefansson IM, Straume O, Chappuis PO, Begin LR, et al. The prognostic implication of the basal-like (cyclin E high/p27 low/p53+/glomeruloid-microvascular-proliferation+) phenotype of BRCA1-related breast cancer. Cancer Res. 2004;64(3):830-5. [PubMed: 14871808].
https://doi.org/10.1158/0008-5472.CAN-03-2970
PMid:14871808
 
31. Banerjee S, Reis-Filho JS, Ashley S, Steele D, Ashworth A, Lakhani SR, et al. Basal-like breast carcinomas: clinical outcome and response to chemotherapy. J Clin Pathol. 2006;59(7):729-35. [PubMed: 16556664].
https://doi.org/10.1136/jcp.2005.033043
PMid:16556664 PMCid:PMC1860434
 
32. Rakha EA, El-Rehim DA, Paish C, Green AR, Lee AH, Robertson JF, et al. Basal phenotype identifies a poor prognostic subgroup of breast cancer of clinical importance. Eur J Cancer. 2006;42(18):3149-56. [PubMed: 17055256].
https://doi.org/10.1016/j.ejca.2006.08.015
PMid:17055256
 
33. Fulford LG, Reis-Filho JS, Ryder K, Jones C, Gillett CE, Hanby A, et al. Basal-like grade III invasive ductal carcinoma of the breast: patterns of metastasis and long-term survival. Breast Cancer Res. 2007;9(1):R4. [PubMed: 17217540].
https://doi.org/10.1186/bcr1636
PMid:17217540 PMCid:PMC1851397