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Abstract 

Background: Healthcare-associated infections (HAIs) pose a significant challenge to patient safety and healthcare systems worldwide. These 
infections, acquired during medical care, can lead to prolonged long hospital stays, increased morbidity and mortality, and substantial 
healthcare costs. Identifying and managing risk factors associated with HAIs is crucial for effective prevention and control strategies. 
Objectives: This study aims to systematically review the application of artificial intelligence (AI) techniques in Healthcare Associated 
Infections (HAIs). 
Methods: A systematic review was performed that follows the Preferred Reporting Items for Systematic Reviews (PRISMA) guidelines. 
PubMed was used to search for HAI publications with an emphasis on AI that were published during and post-COVID-19 pandemic. The 
terms “artificial intelligence” and “HAIs” were used to search for the publications. 
Results: A total of 29 articles were included in the systematic review. The most commonly studied healthcare-associated infections 
(HAIs) were ventilator-associated pneumonia (VAP) and hospital-acquired pneumonia (HAP). However, other HAIs such as hospital-
acquired bloodstream infections (BSI), urinary tract infections (UTIs), surgical site infections (SSIs), Klebsiella pneumonia bloodstream 
infections (Kp-BSI), incubator infections, skin infections, central nervous system infections, meningitis, central line-associated 
bloodstream infections (CLABSIs), and tracheobronchitis were also examined, although to a lesser extent. 
Conclusion: By providing a comprehensive overview of the current landscape of AI solutions in HAI research, this review seeks to 
facilitate knowledge exchange, promote further research collaborations, and ultimately contribute to the development of effective 
strategies for preventing and managing HAIs. 
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1. Background 

Hospital-acquired infections (HAIs) pose a 
major challenge to patient well-being and 
healthcare systems worldwide (1). These 
infections, acquired during medical care, can 
result in lengthy hospital stays, increased 
morbidity and death, and substantial healthcare 
costs. Identification and management of risk 
factors associated with healthcare-associated 
infections are critical for effective prevention and 
control strategies (2, 3). 

When multiple infections caused by the same 
pathogen occur in close temporal proximity to 
each other in hospital, it raises concerns about 
potential transmission or outbreaks. Hospital 
epidemiologists in typically take a traditional 
approach to investigating such situations. This 
included defining cases, developing a list of 
potentially affected people, examining medical 
history for frequent exposures, conducting 
ecological surveys, and reviewing healthcare 
practices (4). In recent years, artificial intelligence  
has become a robust tool in healthcare and 
revolutionized various aspects of medical practice 
(5). Machine learning and deep learning are AI 
techniques that have been promising in predicting 
and analyzing complex medical outcomes (6). In 
the context of healthcare-associated infections, AI 

solutions are able to improve our comprehension 
of risk factors (7), diagnosis, and death prediction 
(8), understanding of disease outbreaks (9), staff 
training, hand hygiene, and environmental 
cleaning (10). 

In this paper we present a thorough analysis of 
AI solutions for identifying and analyzing risk 
factors, forecast and mortality predictions related 
to HAIs. By summarizing and analyzing the 
existing literature, we aim to assess the current 
state of AI applications in this field, highlight key 
findings, and identify potential challenges and 
future directions. Overall, this review attempts to 
illuminate the capability of AI in improving risk 
assessment, prognosis, and mortality prediction 
for HAIs. Through a critical analysis of existing 
literature, we hope to identify knowledge gaps, 
highlight areas for further investigation, and 
ultimately contribute to the advancement of AI-
driven approaches to HAI prevention and control. 

 

2. Objectives 

This study aims to systematically review the 
application of artificial intelligence (AI) techniques in 
Healthcare Associated Infections (HAIs). 
 

3. Methods 

The current systematic review was preformed 
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according guidelines. The PubMed and Medline, 
databases were searched for peer-reviewed 
articles in English using pre specified search 
terms. The search terms included "cross infection" 
OR "hospital infection" OR "nosocomial infection" 
OR "healthcare-associated infection" in 
combination with terms related to predictive 
models, artificial intelligence, machine learning, 
and other relevant topics. 

Inclusion criteria for studies were those that 
focused on describing risk factors, prognosis, or 
predicting mortality from healthcare-associated 
infections (HAIs). Studies that fulfilled the 
inclusion criteria were incorporated in the 
investigation. 

Exclusion criteria included studies that were 
unable to fulfill the inclusion criteria or whose 
primary objectives or outcomes related to the 
implantation of AI programs for HAIs, drug-
resistant infections, treatment, or AI solutions for 
molecular diagnosis or genome detection of 
microbial pathogens of nosocomial infections. 

The search was conducted for articles 
published after the COVID-19 pandemic 
(December 2019). The search was conducted 
through 14, 2023, the last date for which sources 
were searched. 

The search strategy was as follows: 
"cross infection" OR "hospital infection" OR 

"nosocomial infection” OR "healthcare associated 
infection”) AND (“prediction model" OR "artificial 
intelligent*"OR "artificial intelligence” OR 
“artificial learning” OR "deep learning OR 
“learning” OR "machine learning” OR “knowledge 
representation" OR "neural network” OR 
"automated monitoring system"  OR “probabilistic 
network*” OR “statistical learning"  OR “support 
vector machine*” OR ”generalized linear model*” 
OR ”naive Bayes*” OR ”ensemble method*” OR 
“decision tree*”). 

 
3.1. Eligibility screening and data collection 

Data were collected by the original author (AS) 
and monitored by a second author (ZE) using a 
spreadsheet file. A random sample of 10 included 
papers (one-third of the total included papers) 
that developing AI in HIAs was selected to test 
data extraction using a separate spreadsheet file.  

 
3.2. Data synthesis  

The data extraction checklist was modified as 
need during the study. Data extraction was 
performed for the included paper: Journals 
ranking based on their SJR (Scientific Journal 
Rankings), authors, publication year, country, SJR 
ranking, study period, source of data, software, 

hospital complication, AI algorithms, AI 
algorithms values, and sample size. 

 

4.Results 

After conducting a systematic search on the 
PubMed database on April 7, 2023, a total of 177 
papers were identified. These papers underwent a 
rigorous screening and selection process, as 
shown in Figure 1, with resulted in 29 studies 
were incorporated into our systemic review. 

 
4.1. Characteristics of the Included Studies 
4.1.1. Country  

The included studies were conducted in 10 
various countries. The majority of studies (n = 11, 
38%) were conducted in China (11-21), followed 
by the United States (n = 7, 24.1%) (10, 22-24). 
Three studies (10.3%) were conducted in Japan 
(25-27), while the remaining eight studies were 
conducted in Denmark, France, Iran, Italy, Naples, 
the United Kingdom, and Israel (in collaboration 
with the United States). 

 
4.1.2. Publication years 

Regarding publication years, of 29 included 
studies, 6 (20.7%) were published in 2019 (12, 
22, 26-29), 7 (24.1%) in 2020 (10, 21, 23, 25, 30-
32), 5 (17.2%) in 2021 (7, 13, 24, 33-35), 7 
(24.1%) in 2022 (14, 15, 19, 20, 36, 37), and 4 
(13.8%) in 2023 (11, 16-18). This indicates that 
the most studies were published in recent years, 
with the highest number of publications in 2022. 

 
4.1.3. Regarding the scientific journal rankings 
(SJR) 

The 29 studies, nine (31.0%) in Q1 ranked 
journals (7, 12, 21, 23, 27, 30, 33, 34, 36), ten 
(34.5%) were published in Q2 ranked journals 
(10, 13, 15, 19, 20, 26, 28, 29, 31, 32), six (20.7%) 
were published in Q3 ranked journals (16, 18, 22, 
24, 25, 35), and one (3.4%) was published in Q4 
ranked journal (14). Three studies (10.3%) were 
not ranked in the SJR ranking. This distribution 
suggests that a significant proportion of studies 
were published in journals with high SJR rankings, 
with the majority falling into the Q1 and Q2 
categories. 

The range of years in which data were 
collected in the included studies ranged from 1 to 
18 years. Among the total 29 studies, 17.2% had a 
data collection period of 1 year (15, 26, 29, 31, 32, 
35), 13.8% had a study period of 2 years (13, 25, 
36), 6.9% had a study period of 3 years (16, 25, 
28), 

 

http://razavijournal.com/


Saki and Ebnehoseini. 

 

2                                                                                                                                                                                       Razavi Int J Med. 2023; 11(4): e1289. 

 
Figure 1. Process of selecting studies 

 

 

 

Figure 2. The distribution of the identified studies based on the year of publication 
 

13.8% had a study period of 4 years (11, 14, 19, 
23), 13.8% had a study period of 5 years (12, 18, 
30), 6.9% had a study period of 6 years (10, 27), 
3.4% had a study period of 7 years (20), 3.4% had 
a study period of 11 years (21), 10.3% had a study 
period of 12 years (22, 24, 37), 6.9% had a study 
period of 14 years (33, 34), and 3.4% had a study 
period of 18 years (7). These results indicate that 
the study periods varied across the included 
studies, ranging from 1 to 18 years. 

 
4.2. Study setting  

Of included studies, 34.5% (n = 10) were 
conducted in intensive care units (ICU) (13, 16, 
22, 24-26, 28-30, 33). In addition, 17.2% (n = 5) 
were focused on elderly patients (12, 18-20, 37), 
and another 17.2% were conducted pediatric 
patients (17, 21, 31, 34). Some examined patients 
with burn (14), schizophrenic (27), acute 
respiratory distress syndrome (23), elective 
abdominal surgery (11), and trauma patients (32). 
The remaining studies were performed on all 
hospitalized patients inpatients (7, 10, 15, 35, 36). 

 
4.3. Sample size and data source 

The findings of the present study indicate that the 
majority of studies (n= 14, 48.3%) relied on data from 
electronic medical records or hospital information 
systems to develop artificial intelligence models (7, 
10-15, 19, 22, 24, 30, 34, 35, 37). This show the 
importance of these data sources for research in this 
field. In addition, 17.2% of studies used data from 
medical records data to develop predictive models 
using artificial intelligence techniques (16, 20, 21, 27, 
29). In addition, five studies (17.2%) used data from 
research databases (18, 23, 26, 33, 36), while three 
studies (10.3%) utilized data from national databases 
(25, 31, 32). These findings highlight the different 
data sources used in the studies and the importance 
of electronic medical records and hospital 
information systems for research on this topic. 

The results show variability in sample sizes 
among the identified studies, with some having 
smaller sample sizes (< 200) (13, 16, 17, 21, 25-
27), some having medium sample sizes (>= 200 to 
<1000) (12, 15, 20, 28, 32, 34), and other studies 
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having larger sample sizes (>= 1000). The range 
of sample size was from 24 (26) to 897344 (10). 

 
4.4. Validation methods  

The most frequently used validation methods in 

the incorporated studies were, in descending order, 
were logistic regression models (n=20), random 
forest (RF) (n=11), support vector machines (SVM) 
(n=12), decision tree classification (n=12), Multi- 
Layer Perceptron (MLP) (n=2), calibration plot 

 

 
Figure 3. The distribution of the identified studies based on the years of data gathering 

 
(n=1), Neural networks (n=10), eXtreme Gradient 
Boosting [XGBoost) (n=9), decision curve analysis 
(DCA) (n=3), classification and regression tree 
(CART) (n=2), Dense Encoder (n=1), k-nearest 
neighbors (KNN) (n=2), concordance index (c-
index) (n=2), clinical impact curve analysis (CICA) 
(n=1), Ranger Forest Classifier (RFC) (n=2), least 
absolute shrinkage and selection operator (LASSO) 
(n=4), Bayes search method (n=1), and finally Deep 
Averaging Network (DAN) (n=1). These methods 
were used to analyze and predict infection rates in 
hospital. 

 
4.5. Hospital acquired infection (HAIs) 

Seven studies were conducted with the aim of 
applying machine learning-based risk prediction 
models to prognosticate the occurrence of 
nosocomial infections by selected infection types 
(13, 15, 16, 26, 28, 36), including COVID-19 (two 
studies) (15, 36), carbapenem resistant 
Enterobacteriaceae (one study) (13), Clostridium 
difficile infection (one study) (28), Acinetobacter 
baumannii infections (one study) (16), and 
Pseudomonas aeruginosa (one study) (26).  

The identified studies focused on the 
development of artificial intelligent models for 
different AHI (14, 25, 29, 32, 33, 35). For example, 
Karajizadeh et al. conducted a study aimed at 

developing a model to anticipate in-hospital death 
due to HAIs in trauma patients. The researchers used 
an unbalanced dataset that differnt types of HAIs 
such as upper respiratory tract infections, urinary 
tract infections (UTI), surgical site infections skin 
infection, bloodstream infection, pneumonia, central 
nervous system infections, and meningitis (32). Risk 
prediction models for ventilator-Associated 
Pneumonia (VAP), hospital-acquired pneumonia 
(HAP), UTI, surgical site infection (SSI), bloodstream 
infection (BSI), and tracheobronchitis were 
developed using random forest (RF), logistic 
regression, and convolutional neural networks 
(CNN). The positive predictive value (PPV), and 
negative predictive value (NPV) (30). 

VAP (n=8) (12, 16, 18, 23, 24, 26, 35, 37) and HAP 
(n= 5) (16, 19, 22, 27, 32) were the most frequent 
HAIs in the included studies. Wu et al. developed a 
nomogram to VAP in patients with acute respiratory 
distress syndrome (ARDS) using decision curve 
analysis (DCA) calibration plot, and C-index. This 
nomogram can be used after ICU admission and 
utilizes readily available variables (23).  

Xu et al. investigated the occurrence of VAP and 
related risk factors in elderly patients receiving 
mechanical ventilation using a logistic regression 
model. They developed a model with an ROC of 
0.722 (95% CI, 0.679 to 0.765) specifically to 

 
Table 1. The Features of the Included Studies 

Row Authors Publication year Country 
SJR 

ranking 
Study period Source of Data Software 

1 Kuo et al. (27) 2019 Japan Q1 2013 to 2018 PMRs -c 
2 Zhang et al. (11) 2023 China -a 2018 to 2021 EHRs R  
3 Zachariah et al. (10) 2020 USA Q2 2009 to 2014 EHRs -c 
4 Wu et al. (23) 2020 USA Q1 2008 to 2011 Research dataset R  
5 Li et al. (21) 2020 China Q1 2009 to 2019 PMRs R  
6 Xu et al. (12) 2019 China Q1 2011 to 2015 EHRs SPSS  
7 Moller et al. (7) 2021 Denmark Q1 2001 to 2018 EHRs SAS  
8 Li et al. (18) 2023 China Q3 2015 to 2019 Research data set SPSS  
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9 Giang et al. (24) 2021 USA Q3 2001to 2012 EHRs -c 

10 
Goodwin and Demner-

Fushman (22) 
2019 USA Q3 2001to 2012 EHRs 

-c 

11 Pei et al. (16) 2023 China Q3 2019 to 2021 PMRs EpiData \ R  
12 Chen et al. (19) 2022 China Q2 2017 to 2020 EHRs R  
13 Liang et al. (37) 2022 USA Q2 2001 to 2012 EHRs Python 
14 Karajizadeh et al. (32) 2020 Iran Q2 2017 to 2018 National  database SPSS/Python 
15  Ai et al. (20) 2022 China -a 2016 to 2022 PMRs R \ Python 
16 Myall et al. (36) 2022 UK Q1 2020 to 2021 Research dataset R 
17 Wang et al. (13) 2021 China Q2 2018 to 2019 EHRs -c 
18 Wang et al. (15) 2022 China Q2 2020 EHRs -c 
19 Barchitta et al. (33) 2021 Italy Q1 2006 to 2019 Research dataset SPSS  
20 Nistal-Nuño  et al. (25) 2020 Japan Q3 2002 -2004 National  database MATLAB  
21 Walker  et al. (34) 2021 USA Q1 2005 to 2018 EHRs Python 
22  Dos Santos et al. (35) 2021 Brazil Q3 2017 EHRs Python 
23 Tilton and Johnson (28) 2019 USA Q2 2015 to 2017 -b -c 
24 Jiang  et al. (17) 2023 China -a 2021 to 2022 -b  R  
25   Rabhi et al. (29) 2019 French Q2 2009 to 2010 PMRs -c 
26 Liao et al. (26) 2019 Japan Q2 2015 Research dataset MATLAB 
27 Roimi  et al. (30) 2020 USA-Israel Q1 2013 to 2017 EHRs Python 
28 Wang  et al. (14) 2022 China Q4 2016 to 2019 EHRs R  
29 Montella  et al. (31) 2020 Naples Q2 2016 to 2020 National  database Python 
-a: Journal not index in Scopus 
-b: Dataset was not reported 
-c : Software was not reported 

 
 

predict the happening of VAP and recognize high-
risk patients (12).  

Li et al. also used a logistic regression model to 
create a VAP prediction model and constructed a 
nomogram according to the baseline clinical 
features of elderly ICU patients on mechanical 
ventilation. Giang et al. examined the suitability of 
machine learning methods for predicting of VAP 
and used logistic regression, multilayer perceptron, 
random forest, support vector machine, XGBoost, 
CURB-65, and predisposition methods (24).  

Liang et al. compared the use of the random 
forest technique with the Clinical Pulmonary 
Infection Score ((CPIS)-based model for VAP 
prediction. They found that the VAP prediction 
model had excellent performance and 
outperformed the CPIS model in accurately 
predicting VAP (37). Liao et al. collected 
outperforming data from patients and built 
Ensemble Neural Network (ENN) and SVM 
prediction models to foretell whether patients 
were infected with VAP (26). 

 

Table 2. The application of AI in HAIs 

Row Authors 
Hospital 

complication 
AI Algorithms AI Algorithms values Sample size 

1 Kuo et al. [27] HAP 
CART,C5.0, 

KNN,NB, RF, 
SVM, LRG 

Train: CART: 0.851, C5.0: 0.971, KNN: 0.696, NB: 
0.798, RF: 0.971, SVM: 0.936, LRG: 0.762, 

Model: CART: 0.880, C5.0: 0.993, KNN: 0.701, NB: 
0.831, RF: 0.994, SVM: 0.953, LRG: 0.823 

185 

2 
Zhang et al. 

[11] 
SSIs 

Multivariate 
LRG 

LRG Model:0.926 3018 

3 
Zachariah et al. 

[10] 
UTIs ANN, DT, LRG LRG Model:0.63, ANN:0.77, Decision Tree:0.78 897344 

4 Wu et al. [23] HAP, VAP C-index/ / DCA Model: 0.744 1000 

5 Li et al. [21] SOFA,Kp-BSI 
Multivariate 

Cox regression 
SOFA score: 0.79 

Klebsiella pneumoniae (KP) specific SOFA:0.85 
146 

6 Xu et al. [12] HAP- VAP LRG LRG Model:0.722 (95% CI, 0.679 to 0.765) 901 

7 Moller et al. [7] HA,UTIs 
ANN, XBG, 

Regression, DT. 
HA-UTI model: 0 hours after admission=0.82 to 0.84\ 

48 hours after admission=0.71 to 0.77 
17768 

8 Li et al. [18] VAP LRG 
LRG Training: 0.859  

LRG Model: 0.813 
1219 

9 
Giang et al. 

[24] 
VAP 

LRG, Multilayer 
perceptron,  

RF, SVM, XGB 

Prediction Model of VAP in ICU 6 hours 
LRG: 0.744, Multilayer perceptron: 0.731, RF: 0.771, 

SVM: 0.765, XGB: 0.799, CURB-65: 0.503, 
predisposition: 0.565. 

Prediction of VAP in ICU 48 hours 
LRG: 0776, Multilayer perceptron: 0.741, RF: 0.777, 

SVM: 0.775, XGB: 0.791 

6126 

10 
Goodwin and 

Demner-
Fushman [22] 

HAP 
RNNs, CNNs, 
DAN, Dense 

Encoder 

Training: RNNs: 0.64, CNNs: 0.65, DAN: 0.64, Dense 
Encoder: 080, Sparse: 0.68. 

Model: RNNs: 0.65, CNNs: 0.60, DAN: 0.66, Dense 
Encoder: 0.55, Sparse: 0.61. 

1467 

11 Pei et al. [16] HAP 
LASSO 

regression 

The C-index:  
Training: 0.922 (95% CI: 0.873–0.970) 
Validation:0.823 (95%CI: 0.706–0.941) 

90-day mortality  

164 
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Training: 0.922 (95% CI: 0.873, 0.971) 
Validation: 0.823 (95% CI:0.703, 0.943) 

12 Chen et al. [19] 
Non-

ventilator 
HAP 

C-index, DCA, 
LASSO 

Model: 0.821 
Test: 0.813 

15420 

13 Liang et al. [37] VAP RF 
: 59% ± 2% 

Random Forest Model: 84% ± 2% 
38515 

14 
Karajizadeh et 

al. [32] 

URI, UTI, SSI, 
SKIN, BSI, 
HAP, CNS, 

surgery took 
place 

C5.0 tree C5.0 tree Model: 0.619 549 

15 Ai et al. [20] UTI 
RFC, SVM, XGB, 

ANN, DT 

Training:  
RFC: 0.925 (95% CI, 0.868-0.982), SVM: 0.787 (95% 
CI, 0.730-0.844), DT: 0.776 (95% CI, 0.719-0.833), 
ANN: 0.879 (95% CI, 0.822-0.936), XGboost 0.797 

(95% CI, 0.740-0.854).  
Test: 

RFC 0.918 (95% CI, 0.861-0.975), SVM 0.779 (95% CI, 
0.722-0.836), DT 0.769 (95% CI, 0.712-0.826), ANN 

0.854 (95% CI, 0.797-0.911), 

674 

16 Myall et al. [36] 
Hospital-onset 

COVID-19 
XGB XGB Model: 0·89 (95% CI 0·88–0·90) 51157 

17 
Wang et al. 

[13] 
BSI 

Multivariate 
analysis 

LRG Model: 0.921 42 

18 
Wang et al. 

[15] 

Nosocomial 
SARS-CoV-2 

Infection 

LASSO, LRG, 
SVM, DT, RF, 

DCA, CICA 

Test: 0.863 (95% CI: 0.834–0.892). Model: 0.813 (95% 
CI: 0.760–0.866) 

857 

19 
Barchitta et al. 

[33] 
HAIs SVM 

Traditional statistical analysis 0.612 (95% CI = 0.60-
0.63), SVM with SAPS II 0.90 (95% CI = 0.88-0.91), 

SVM Without SAPS II along 0.66 (95% CI = 0.65-0.68) 
7827 

20 
Nistal-Nuño et 

al. [25] 
HAIs ANN 

Backpropagation with the for xor.README file values 
test: 0.0, model: 0.02760293 (MSE) 

Backpropagation with momentum with the for 
xor.README file values test: 0.0, model: 0.0 (MSE) 

- 

21 
Walker et al. 

[34] 
CLABSIs 

Regularized LR 
RF, SVM, XGB 

Best model: 14- day Infection Recurrence 0.83, 91-day 
Infection Recurrence 0.77, 14-day CVC Removal 0.66, 

365-d CVC Removal 0.76. 
969 

22 
Dos Santos et 

al. [35] 

Pneumonia 
VAP, UTI, SSI, 

BSI, 
Tracheobronc

hitis 

RF, LRG, CNN, All infections 90.27% (SD ± 0.15) 5105 

23 
Tilton and 

Johnson [28] 
CDI LRG 

Risk factors for CDI identified and incorporated into 
the model included age ≥70 years (adjusted odds 

ratio,1.89;95% confidence interval1.05-3.43; P 
=.0326) and recent hospitalization in the past 90 days 
(adjusted oddsratio,3.55;95% confidence interval1.90-

6.83; P < .0001). 

200 

24 Jiang  et al. [17] 
Incubator 
infection 

XGB, RF, SVM, 
DT 

XG-Boost: 0.93, RF: 0.91, SVM: 0.91, and DT: 0.89 76 

25 
Rabhi et al. 

[29] 
HAIs CNN CNN: 0.98 1531 

26 Liao et al. [26] VAP ANN/ SVM 
ENN AUC=0.9879 
SVM AUC=0.9508 

24 

27 
Roimi et al. 

[30] 
BSI 

Multivariate 
LRG 

Hospital1 cross-validation 1: 0.87 ± 0.02, Internal 
validation:  0.89 ± 0.01  

Hospital2 cross-validation 2: 0.93 ± 0.03, Internal 
validation:  0.92 ± 0.02 

2351 

28 
Wang et al. 

[14] 
HAIs 

Multivariate 
LRG 

LRG Model: 0.97 (95% , CI: 0.95-0.99) 3475 

29 
Montella et al. 

[31] 
BSI 

SVC, 
CATBOOST, 

XGB, RFC, MLP, 
RF, LR 

SVC: 0.5357, CATBOOST: 0.5670, XGB: 0.5313, RFC: 
0.5335, MLP: 0.6027, RF: 0.5335, LR: 0.6027 

1203 

 
Dos Santos et al. performed healthcare-

associated infection surveillance, including VAP as 
well as pneumonia, UTI, SSI, and BSI, using random 
forest, logistic regression, CNN, PPV, and NPV 
methods (35). 

Chen et al. tried to create and validate a simple 

nomogram and dynamic web-based calculator for 
anticipating the risk of nonventilated hospital-
acquired pneumonia (NV-HAP) in elderly 
hospitalized patients. They used the C-index, decision 
curve analysis, and least absolute shrinkage and 
selection operator (LASSO) methods (19). 
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In another study, a predictive model for 
hospital-acquired pneumonia in schizophrenic 
patients was developed using CART, C5.0, KNN, NB, 
RF, SVM, and logistic regression (LRG). This model 
can act as a useful tool for clinician physicians 
curing schizophrenic patients (27). 

Goodwin et al. created a deep learning system to 
foretell the risk of impending pneumonia in the 
future using clinical findings recorded in ICU files 
for a risky population (22). 

In the study by Pei et al. prognostic factors for 
HAP and VAP triggered by Acinetobacter baumannii 
were validated regarding 90-day death in patients 
with in the respiratory ICU and a predictive 
nomogram was created to individually prognosticate 
the probability of 90-day death in patients with HAP 
and VAP triggered by AB. In the respiratory ICU. This 
nomogram model showed excellent performance in 
treating patients with - HAP and VAP caused by 
Acinetobacter baumannii (16). 

We identified four models to predict and 
mortality s for BSI (13, 30-32, 35). Two studies the 
used multivariable regression models (13, 30). In 
Montella’s study a prognosticative analysis of 
healthcare-associated blood stream infections in the 
neonatal intensive care unit was performed (31). 

Other AHI in the identified studies were as 
follows: UTIs (n=5) (7, 10, 20, 32, 35), SSIs) (n=3) 
(11, 23, 35), Klebsiella pneumonia bloodstream 
infection (Kp-BSI) (21), incubator infection (17), 
skin infection (20), central nervous system infection 
(20), meningitis (20), CLABSIs (34), and 
tracheobronchitis (n=1) (35). 
 

5. Discussion 

The purpose of the current study was to review 
and investigate the studies in which machine 
learning-based risk prediction models were used to 
predict the occurrence of nosocomial infections 
caused by different types of infections. The 
identified studies highlight the capability of 
machine learning-based risk prediction models to 
improve the prediction, identification, and 
management of nosocomial infections. These 
models are valuable tools for healthcare 
professionals to identify high-risk patients, take 
preventive measures, and optimize patient 
outcomes. 

Our results suggest that human-like artificial 
intelligence is indeed experiencing rapid growth in 
healthcare, similar to other arears of healthcare 
domains such as dentistry (38), gastric cancer (39), 
and nutrition (40). Most studies in HAI have been 
published in recent years, with 2022 having the 
highest number of publications. This temporal 
distribution indicates an increasing interest in HAI 
and a greater focus on HAI in healthcare. It indicates 
that researchers and practitioners are recognizing 

the potential benefits and applications of HAI in 
improving healthcare outcomes. 

Among the studies identified in the systematic 
review, VAP and HAP were the most commonly 
studied HAIs. Various machine learning techniques 
were used to develop predictive models for VAP, 
such as logistic regression, random forest, SVM, and 
neural networks. These models showed excellent 
performance in accurately predicting the 
occurrence of VAP. in Addition, nomograms were 
developed as useful tools for identifying risky 
patients and supporting VAP prediction. Despite, 
these advancements, the systematic study by 
Frondelius et al. highlights current limitations in the 
development and application of these predictive 
models. The authors emphasize the need for further 
research and collaboration between clinical studies 
to effectively translate these tools from the 
laboratory to healthcare practice, ultimately 
improving the diagnosis and prognosis of VAP and 
related outcomes (41). 

Healthcare-associated infections such as BSIs, 
UTIs, SSIs, Klebsiella Kp-BSI, incubator infections, 
skin infections, central nervous system infections, 
meningitis, CLABSIs, and tracheobronchitis have 
also been investigated, although to a lesser extent. 
These studies focused primarily on ICU, elderly, and 
neonate settings. Among hospital units, the highest 
rates of these infections were observed in 
transplant units, neonatal units, and ICUs. 
Bacteremia, bloodstream infections, gastrointestinal 
infection, pneumonia, and respiratory tract 
infection were the most commonly reported 
infections in the study conducted by Raoofi et al. 
(42). These particular areas of focus may have been 
selected due to the high incidence and death rates 
related to these infections in hospitals. 

The results of our systematic review highlight 
the variability in sample sizes among the identified 
studies. Smaller sample sizes may have limited 
statistical power and are more susceptible to 
sampling error, while larger sample sizes are 
generally more representative of the population 
and provide greater statistical power. It is crucial to 
take into account the sample size when interpreting 
the results of each study and evaluating the strength 
of the findings. 

In a related systematic review by Akazawa and 
Hashimoto on artificial intelligence in gynecologic 
cancers, they also reported several studies with 
relatively small data set. This is due to the fact that 
many studies used datasets from single 
institutions, resulting in a limited number of 
included patients. They emphasize the importance 
of further validation with larger databases to 
determine the accuracy and reliability of the 
suggested algorithms. This indicates that studies in 
this area need  to include larger and more diverse 
datasets to enhance the generalizability and 
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robustness of the findings (43). 
 

6. Conclusion 

The review includes studies that have used AI 
techniques such as machine learning algorithms, 
deep neural networks, and other AI methods. We 
will explore the different types of data sources used, 
including health data, electronic health records, 
genetic data, and microbiological data, to train and 
develop predictive models. In addition, we will 
investigate the performance and accuracy of these 
AI models in predicting HAIs and their associated 
outcomes. 

By providing a comprehensive state of art of the 
current landscape of AI solutions in HAI research, 
this review aims to facilitate knowledge sharing, 
foster further research collaborations, and 
ultimately contribute to the creation of operative 
strategies for stopping and management HAIs. 
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