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Role of Stem Cell Elements in Chronic Myeloid Leukemia
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Context: Chronic myeloid leukemia (CML) is believed to occur following the clonal expansion of haematopoietic stem cells and is 
maintained by expanding clones which have acquired a BCR-ABL fusion gene. The properties of untreated CML stem/progenitor cells 
correlate with a subsequent response to chemotherapy.
Evidence Acquisition: The fifty two significant articles discussing the stem cell in chronic myeloid leukemia from 1996 to 2012 were 
selected according to the authors’ experience.
Results: Studies have shown that primitive CML cells are less responsive to Tyrosine Kinase Inhibitors (TKIs) and are a reservoir for the 
relapse of multi drug resistant (MDR).
Conclusions: Following that, minimal residual disease (MRD) measurement aims to detect very small numbers of leukemic cells, below 
the detection limit of morphology and cytogenetics with molecular techniques for patients in clinical remission.
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1. Context
A number of studies have investigated molecular path-

ways of CML stem cells which are expected to underlie 
their relative insensitivity to Imatinib (Glivec ®).The ex-
pression of several genes is reported in different subsets 
of the primitive and/or quiescent chronic phase CML 
cells which might be implicated in affecting their re-
sponsiveness to Imatinib (1-3). The results indicate that 
primitive CML cells are altered in ways which would 
contribute to a resistant phenotype achieved through 
multiple mechanisms such as the mutation of the 
ABL-kinase domain (1, 2). However, Jiang et al. (3) have 
shown that CML progenitor and/or stem cells possess 
multiple features that would be expected to promote 
acquired resistance to BCR-ABL-targeted drugs, includ-
ing elevated BCR-ABL expression. Furthermore, Barnes 
and colleagues (4) reported a lesser effect of Imatinib 
on the cells produced in vitro from lin-CD34+CD38- CML 
(stem) cells, compared with cultures initiated with the 
CD38+ subset of lin-CD34+ cells. BCR-ABL kinase activ-
ity is also higher in the CD34+CD38- cells. Nevertheless, 
primitive Imatinib-resistant CML cells demonstrated 
only single-copy BCR-ABL but expressed significantly 
higher BCR-ABL transcript and protein levels than more 
mature CML cells (5). Within the entire CD34+ subset of 
CML cells, BCR-ABL expression is not strongly affected by 
changes in cell cycle status.

2. Evidence Acquisition
The review paper evaluated studies of stem cell in 

chronic myeloid leukemia in particular search strategies 
and was designed to extract data from fifty two signifi-
cant articles reviewed ranged from 1996 to 2012 confined 
to PubMed and selected according to the authors’ experi-
ence. The review is a review of clearly formulated ques-
tions that uses explicit approaches to identify, select, and 
critically appraise relevant research and to collect and 
analyze data from the studies that are included.

3. Results

3.1. CML Treatment
There is strong evidence that malignant alterations 

of haematopoietic cells by BCR-ABL are reliant on its ty-
rosine kinase (TK) activity. Several signalling pathways 
are triggered in a kinase-dependent manner; BCR-ABL 
protein adds a phosphate group to tyrosine, which then 
regulates the expression of various genes implicated in 
the pathogenesis of CML (6). Although the BCR region 
expresses different kinases, the tyrosine kinase activity is 
highly relevant for the tyrosine kinase inhibitors (TKIs), 
such as Imatinib mesylate (7). Imatinib is a competitive 
inhibitor of ATP at the location of ATP binding, which is 
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formed by the tyrosine kinase domains of BCR-ABL. By 
interfering with cell growth, Imatinib induces cell death 
in BCR-ABL positive cells (8). In patients with newly diag-
nosed CML, TKIs including Imatinib are offered as a front-
line therapy (9, 10). While the advent of TKIs has signifi-
cantly changed the management of the chronic phase 
of CML, these drugs are not entirely able to eradicate the 
disease. In most CML patients, therapy will induce rapid 
clinical responses, but mainly targets dividing cells and 
does not typically eliminate the most primitive CML cells 
(11, 12). Risk stratification and response to Imatinib in 
patients with CML depend on several factors including 
molecular abnormalities, together with the size of the tu-
mour burden (13). A 2 logarithmic reduction in BCR-ABL/
ABL ratio of the patient’s own baseline level is usually 
considered as complete cytogenetic remission (CCyR) 
and a 3 logarithmic reduction is termed a ‘major molecu-
lar response’ (MMR) (14). Although BCR-ABL remains an 
optimal molecular therapeutic target, it is vital to iden-
tify the different components involved in CML patho-
genesis. The mechanisms which may underlie the drug 
insensitivity of CML stem cells are unclear; factors such 
as acquired mutations (2, 15, 16), in combination with the 
various levels of BCR-ABL expression, may play a notable 
part. An important study demonstrated that primitive 
TKI resistant cells express a considerably higher level of 
BCR-ABL transcripts than more mature CML cells do (11), 
while other studies place more emphasis on the expan-
sion of new mutations within the BCR-ABL kinase domain 
during treatment (15, 17). Imatinib may not, as was long 
believed, function by co-binding to the BCR-ABL ATP-
binding site and thus inactivating mitogenic signalling 
(18). However, with the binding of Imatinib, the ABL part 
of the proto-oncogene becomes stabilised and inactive, 
and thus incapable of achieving kinase catalytic activity 
(19). Despite the successful therapeutic role of Imatinib, 
its failure to completely eradicate leukaemic cells has 
been observed (16, 20). Secondary drug insensitivity after 
a preliminary response to Imatinib has led to intensive 
research for the mechanisms of acquired failure of CML 
treatment. Attention has mostly focused on the roles of 
genomic amplification of the BCR-ABL fusion gene, over-
expression of the BCR-ABL transcript and development 
of new mutations in the ABL tyrosine kinase (18, 21, 22). 
Nevertheless, Simanovsky et al. (2008) have studied the in 
vitro adhesive characteristics of Imatinib-resistant cells. 
In their study, it was reported that a relatively small frac-
tion (2%- 20%) of resistant blasts from patients with CML 
adheres to the plastic of the cell-culture dish.

3.2. Monitoring of Residual Disease in CML
Minimal residual disease (MRD) measurement aims to 

detect very small numbers of leukaemic cells, below the 
detection limit of morphology and cytogenetics for pa-
tients in clinical remission (Figure 1) (23, 24). Over the past 
20 years, the molecular monitoring of morphologically 
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Figure 1. The Measurement of Minimal Residual Disease (MRD) in Acute 
Leukemia

undetectable traces of CML has improved significantly. 
During the last decade, several studies have shown that 
the quantitative analysis of early MRD in CML corre-
lates remarkably with the clinical outcome and predic-
tion of relapse (24-27). The term MRD also corresponds 
to the presence of leukaemic cells below the detection 
level of conventional diagnostic methods which en-
ables standardised approaches to the quantification of 
the disease before relapse (28). Major achievements in 
molecular methodologies have built the groundwork 
for better quantitative approaches than microscopic or 
cytogenetic techniques offer. These molecular methods 
provide high resolution of the changing level of BCR-ABL 
during treatment. Accurate insight into the kinetics of 
the changes is required, which highlight the need for the 
precise quantification of residual leukemia cells as an in-
tegral part of the modern management of haemopoietic 
malignancies (29).

At diagnosis, there may be as many as 1012 leukaemic 
cells existing in the whole body (red line). By convention-
al morphological criteria, acute leukemia is considered to 
be in complete remission if neoplastic blasts account for 
less than 5% of cells in the bone marrow. It has been report-
ed that patients who presented with at least a 3-logarith-
mic depletion in BCR-ABL transcripts during the therapy 
had an insignificant risk of relapse over the subsequent 
12 months (25, 30). This reduction in the number of tran-
script molecules is defined as a major molecular response 
(MMR) (31). Relapse can ensue at any time during therapy 
or after the completion of treatment and, once it occurs, it 
is more difficult to achieve a secondary remission. One ap-
proach to overcome the possibility of a relapse is to detect 
and eradicate MRD before any overt clinical recurrence 
(32). The comprehensive adoption of modern definitions 
of MRD such as MMR will therefore reduce the probabil-
ity of remission (33). There are important benefits to be 
gained from molecular quantification of BCR-ABL during 
a clinical relapse in CML. First, in the early stages of re-
lapse, when the level of the tumour burden is quite low, 
molecular strategies can optimally define and predict 
the impending relapse; at this level the tumour may be 
more sensitive to the designated therapeutic regimens 
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(34). Second, during the interval of molecular relapse, pa-
tients are probably able to endure intensive therapeutic 
interventions before clinical deterioration (35). Quanti-
tative Real time polymerase chain reaction (RT-qPCR) is 
considered as the method of choice for MRD detection, al-
though (akin to most molecular biology methods) there 
are challenges with its reproducibility and standardisa-
tion between laboratories (14). One of the most signifi-
cant current discussions in the kinetic analysis of tumour 
load relates to standardising the molecular monitoring of 
MRD (36). Current developments in MRD assessment have 
heightened the need for accurate measurements which 
can compare the efficacy of different treatments, coupled 
with the close monitoring of patient’s remission status. 
The rationale is to choose the therapeutic regime that will 
best meet the patient’s needs (personalisation of treat-
ment) (37, 38). Therefore, in recent years, interest in quan-
titative methods such as RT-qPCR has increased, together 
with Affymetrix arrays (39) which enable the monitoring 
of the MRD to improve. Despite of the advances in the 
application of molecular techniques for the monitoring 
of MRD in leukemia, established analysis protocols are 
constrained by intrinsic and fundamental limitations. In 
a real life scenario, the sensitivity of leukaemic cell-anal-
ysis is directly affected by both the number of leukaemic 
cells and the number of cells, which do not express the 
leukaemic signature (40). To achieve a guaranteed high 
level of sensitivity, for a procedure such as RT-qPCR, the 
total number of cells entering a PCR must be annotated, 
because this will permit an accurate and reproducible as-
sessment of the composition of the cell subtype. Whilst a 
great effort has been invested in developing PCR assays, 
the most poorly defined aspect of MRD investigations is 
in the field of sample handling, analyte preparation and 
the normalisation of the number of cells (41). Current 
routine MRD studies using RT-qPCR regularly monitor the 
logarithmic depletion of the number of average copies of 
the target sequence within the total amount of nucleic ac-
ids extracted, typically normalised against a known stably 
expressed reference gene (24). This method is an accurate 
means of quantifying genes within homogeneous cell 
populations. The same method of normalisation is used 
for monitoring dynamic changes in MRD without regard 
to the number of cells in a heterogeneous tissue, such as 
blood. The average analysis of fusion transcripts could 
derive biologically misleading results during the assess-
ment of MRD, the results of BCR-ABL transcript level be-
ing assumed to correlate to the number of cancerous cells 
(42). However, a decrease in the average of expressed gene 
does not necessarily form a linear correlation with the re-
sidual leukaemic burden after therapy. To address this is-
sue, a known number of cells needs to be predetermined 
in a format of single cell gene expression profiling (43).

4. Discussion
CML is a clonal myeloproliferative disease resulting 

from the transformation of primitive stem cells (44). 

CML is typified by the presence of the Philadelphia chro-
mosome, which represents a reciprocal translocation 
between chromosome 22 and chromosome 9 (45, 46). 
The reciprocal exchange of DNA produces an elongated 
chromosome 9 and an aberrant BCR-ABL gene, result-
ing in the generation of the oncogenic p210 BCR-ABL 
protein (47, 48). The chimeric BCR-ABL protein affects 
cellular differentiation, growth, apoptosis and adhesion 
(48). Clonal evolution and mutation in BCR-ABL and on-
cogene amplification are common causes of drug resis-
tance in CML (49). It has also been shown that primitive 
CML cells are less responsive to tyrosine kinase inhibitors 
(TKIs) and form a reservoir for tyrosine kinase resistant 
subclones (11). These subclones include a resistant popu-
lation of cells with high BCR-ABL mRNA and protein ex-
pression. The expression of BCR-ABL may also be required 
for altered cell adhesion which, it has been suggested, is 
related to increased TKI resistance (50, 51). Adherent sub-
clones with high BCR-ABL protein may therefore be im-
portant in the development of residual disease (52).
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