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Background: One of most important operations research problems is Nurse Scheduling Problem (NSP) that tries to find an optimal way 
to assign nurses to shifts with a set of hard constraints. Most of the researches are dealing with this problem in deterministic environment 
with constant parameters. While In the real world applications of NSP, the stochastic nature of some parameters like number of arriving 
patients, stay periods, etc. are some sources of uncertainties that need to be controlled to provide a qualified schedule.
Objectives: In this article we propose our model in an uncertain environment in Department of Heart Surgery in Razavi Hospital.
Materials and Methods: The demand and stay period of patients are stochastic whose the distribution is determined from historical 
data. Finally, the demand of nurses in each shift in planning horizon is calculated regarding the priority (vitality) of patients.
Results: The stochastic optimization is adapted for our problem and the Sample Average Approximation (SAA) method is used to obtain 
a optimal schedule with respect to minimizing the regular and over time assignment costs. The results have been analyzed and show the 
validity of our model.
Conclusions: In this model the demand and stay period of patients are stochastic whose the distribution is determined from historical 
data. We also consider the priority (vitality) of patients in our model.
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1. Background
In the NSP, different constraints with different impor-

tance should be considered. Constraints can be classified 
into two groups: Hard and Soft constraints, which strong-
ly depend on individual preferences, system preferences 
and government regulations. The hard constraints must 
be satisfied to achieve feasible solutions that include de-
mand coverage requirements, while soft constraints are 
desirable but not necessary, and thus can be violated. The 
NSP has several objective functions such as maximizing 
nurse preferences, minimizing number of nurse in work 
shifts, minimizing nurse assignment costs, etc. Due to dif-
ferent approaches to solving the NSP, The used approach-
es can be classified into three groups: optimization ap-
proaches, artificial intelligence approaches and heuristic 
and meta-heuristic approaches. In the following, an over-
view of the researches in this field will be discussed.

1.1. Different Approaches in Nurse Scheduling 
Problem

1.1.1. Optimization Approaches [Mathematical 
Programming]

In the early 1970s, Warner (1) presented a multiple option 

programming to the NSP, that in this research each nurse 
describe a group of variables and each variable within a 
group is a possible schedule for that nurse. Millar et al. 
(2) provided a mathematical model for cyclic and non-cy-
clic type for NSP. The main objective is minimizing nurse 
assignment costs. Venkataraman (3) presented a nurse 
scheduling system for evaluating nurse preference man-
agement regulations. For this purpose, a mixed-integer 
liner programming is used to specify nurse preferences 
for planning horizon. Ozkarahan (4) proposed a flexible 
decision support system that will satisfy the preferences 
of both hospitals and nurses that attempt to improve 
flexible work pattern in scheduling problems. Jaumard et 
al. (5) presented a generic 0-1 linear programming model 
for a complex NSP, which considers most of a real situa-
tion condition. The main objective is minimizing salary 
costs and maximizing both nurse preferences and team 
balance to satisfy the demand coverage constraints. Klinz 
et al. (6) used two mathematical models for a type of the 
NSP in order to minimize the total number of work shifts. 
Bard et al. (7) proposed an integer programming model 
to produce most efficient nurse scheduling system for 
regular and pool nurses in different conditions to satisfy 
expected demand in planning horizon. Hattori et al. (8) 
presented a nurse scheduling system based of Constraint 
Satisfaction Problem (CSP) that constraints have different 
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levels of importance and can change dynamically. Parr et 
al. (9) used Sawing and Noising with simulated annealing 
in NSP to ensure that nurses on each shift are sufficient. 
Another study (10) proposed a stochastic integer program-
ming model for NSP in order to minimize workload pen-
alty on nurses and a Benders’ decomposition approach is 
applied to solve this problem. A greedy algorithm is pro-
posed to solve the recourse sub problems. Fan et al. (11) 
used binary integer linear programming to formulate the 
NSP in order to maximize the satisfactions nurses and hos-
pital regulations.

1.1.2. Artificial Intelligence Approaches
Li et al. (12) used the Bayesian optimization and classi-

fier systems for NSP to minimize total preference cost of 
nurses. Topaloglu et al. (13) presented a fuzzy goal pro-
gramming model for NSP to measure uncertainty in ob-
jective value of hospital regulations, nurse preferences 
and constraints. Topaloglu et al. (14) proposed a multi-
objective integer programming for NSP to treat and to 
produce an equitable schedule for nurses, and to satisfy 
for hospital management preferences.

1.1.3. Heuristic and Meta-Heuristic Approaches
Maenhout et al. (15) presented a novel electromagne-

tism meta-heuristic technique for the NSP to minimize 
the total pattern penalty cost. Landa silva, et al. (16) used 
a multi-objective approach to cope with a real-world con-
dition in NSP. To this end, used an evolutionary algorithm 
to achieve a good quality non-dominated schedules so 
that the scheduler can choose the most appropriate one 
for available nurses. Tsai et al. (17) presented a two-stage 
mathematical modeling for a NSP with respect to hos-
pital management requirements, government regula-
tions, and nurse preferences. Ohki et al. (18) used a new 
approach by using Cooperative Genetic Algorithm (CGA) 
to solve NSP. Zhang et al. (19) proposed a hybrid Swarm-
based optimization algorithm in hospital environments 
that incorporates Genetic algorithm and variable neigh-
borhood search to cope highly-constrained NSP. In the 
real world applications of NSP, vagueness of information 
on objective values of management objectives and nurse 
preferences are some sources of uncertainties that need 
to be managed in providing a good quality schedule. For 
this purpose, the basic parameters such as the demand 
and patient stay period are stochastic and the distribu-
tion of these parameters is determined from historical 
data. The demand for nurses in each shift is determined 
by considering the priority (vitality) of patients that are 
present in the shift. The rest of this article is as follows: in 
Section 2, we present the proposed optimization model 
for NSP and the structure of the model is investigated. 
In Section 3, the solution approach is introduced with 
detailed description of SAA method. Numerical experi-
ments are presented in Section 4. Finally, concluding re-
marks are described in Section 5.

1.2. The Model for Nurse Scheduling Problem
The indices, parameters and variables are summarized 

in Table 1, and in the following our mathematical model 
describes Stochastic Nurse Scheduling Problem (SNSP).

Table 1.  Notation Summary

Indices and Sets

i ϵI Index of available nurses i = 1, 2,…, 18

j ϵ J Index of shift j = 1, 2, 3

kϵZjt Index of patient k = 1, 2, …, Zjt
tϵT Index of date in planning horizon t = 1, 2, …, T

ξϵB Index of scenario ξ = 1, 2, …, B

TA Index of allowed dates for assigning nurse 1 and 2, 
TA ϵ {1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 20, 21, 

22, 24, 25, 27, 28, 29, 30, 31}

Parameters

pj Normal cost of nurse assignment in shift j 

Oj Overtime cost of nurse assignment in shift j

Q Total number of beds in each shift

Qjt Empty capacity of shift j in date t

Zjt Number of new patient arriving in shift j in date t

Ajt Maximum number of allowed patients in shift j in 
date t

Nkjt Number of shifts that patient k in date t (entered in 
shift j) remains in the system

βmjt Priority (vitality) of patient m present at shift j in 
date t βmjt ϵ {0.25,0.50,0.75,1.00}

Pw, k, j-w A binary variable that indicates whether patient k 
(presented shift w) is still at shift j or not.

Tjt Total number of patients in shift j in date t 

Variables

xijt 1 if nurse i is assigned to shift j in date t, 0 otherwise

Vjt Additional nurses in shift j in date t

Rjt Demand for nurses in shift j in date t

MINz=
∑18

i=1

∑3
j=1

∑31
t=1 pj xijt+
∑
ξ∈B

∑3
j=1

∑31
t=1φ (ξ )OjV

ξ
jt , 

St:
Xi1t = 1 i = 1, 2   , t ϵ TA (1)
xi2t + xi3t ≤ 1 ∀i = 3, …, 18, t = 1,2,…,31 (2)
xi3t+xij(t+1) ≤ 1 ∀i = 3,…,18 ,t = 1, 2,…, 31, j = 1, 2, 3 (3)

∑2
j=1

∑31
t=1xijt+ 2
∑31

t=1xi3t ≥ 26

 i = 1, 2, …, 18 (4)

Qξ
jt
=Q −∑ j−1

w=1

∑(Zj−w)
ξ

k=1

�
pw,k , j−w

�ξ

t = 1, 2, …, 31, j = 1, 2, 3, ξ = 1, 2, …, B (5)
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Zξ
jt
≤Qξ

jt
+
�

1− hξ
jt

�
M

t = 1, 2, …, 31, j = 1, 2, 3,ξ = 1, 2, …, B (6)

Zξ
jt
>Qξ

jt
−
�

1− d ξ
jt

�
M

 t = 1, 2, …, 31, j = 1, 2, 3, ξ = 1, 2, …, B (7)

d ξ
jt
+ hξ

jt
= 1

 t = 1, 2, …, 31, j = 1, 2, 3, ξ = 1, 2, …, B (8)

Aξ
jt
= Zξ

jt
hξ

jjt
+Qξ

jt
d ξ

jt

 t = 1, 2, …, 31, j = 1, 2, 3, ξ = 1, 2, …, B (9)

T ξ
jt
=Aξ

jt
+
∑ j−1

w=1

∑(Zj−w)
ξ

k=1

�
pw,k , j−w

�ξ

 t = 1, 2, …, 31, j = 1, 2, 3, ξ = 1, 2, …, B (10)

Rξ
jt
≤∑T

ξ
jt

m=1

�
βmjt

�ξ

 t = 1, 2, …, 31, j = 1, 2, 3, ξ = 1, 2, …, B (11)

Rξ
jt
>
∑T ξjt

m=1

�
βmjt

�ξ
+ 1

 t = 1, 2, …, 31, j = 1, 2, 3, ξ = 1, 2, …, B (12)

Rξ
jt
>
∑18

i=1xijt−
�

1− f ξ
jt

�

 t = 1, 2, …, 31, j = 1, 2, 3, ξ = 1, 2, …, B (13)

Rξ
jt
≤∑18

i=1xijt+Mfξjt

 t = 1, 2, …, 31, j = 1, 2, 3, ξ = 1, 2, …, B (14)

V ξ
jt
=
�

Rξ
jt
−∑18

i=1xijt

�
f ξ
jt

 t = 1, 2, …, 31, j = 1, 2, 3, ξ = 1, 2, …, B (15)

f ξj , d ξj , hξj

ϵ (0, 1) M is a big numberj = 1,2,3, ξ=1,2,…,B (16)
Objective is minimizing the regular and over time as-

signment costs. Let ϕ (ξ) be the corresponding probabil-
ity of scenario ξ = 1, 2, 3, …, B and 

∑
ξ 1013;Bφ (ξ ) = 1 (1) Assures 

that nurse 1 and 2 are assigned to shift one in allowed 
dates. Based on hospital regulations, the nurse 1 and 2 

(head nurses) should be assign to shift one (morning 
shift) in working days. In this hospital no one is allowed 
to work on two consecutive afternoon and night shifts. 
(2) Applies this constraint. If a nurse is assigned to a night 
shift, he/she is no allowed to work in the following days. 
(3) Consider this limitation. (4) shows that every nurse 
should work at least 26 shifts, knowing that Shift 3 (night 
shift) has double work load in compression with shift 1 
and 2 (morning and afternoon shifts). (5) Shows how 
empty beds in shift j in date t can be calculated from total 
beds available and number of patients that are present in 
shift j in date t. (6-9) calculate the number of accepted pa-
tients in shift j in date t considering the remaining capac-
ity. (10) Shows total number of patients present in shift j 
in date t. (11-12) determine the (integer) value of demand 
in shift j date t by taking into account the priority factor 
of total patient in shift j. (13-15) are calculating additional 
nurses in shift j in date t. For this purpose, if number of 
existing nurses are less than required ones, the number 
of over time nurses will be a positive value, calculate by 
(15).

In this research Zjt and Nkjt are assumed to be uniformly 
(discrete) distributed: Zjt ~ DU [a, b] and Nkjt ~ DU [c, d] for 
k = 1, 2, 3, …, Zjt, t = 1, 2, …, 31, j = 1, 2, 3.

An exact solution can be achieved by enumeration for 
a small size problem. However, if the problem size gets 
bigger, the model is unmanageable. This article employs 
Sample Average Approximation (SAA) algorithm as a so-
lution strategy for Stochastic Nurse Scheduling Problem. 
For applying the SAA algorithm, the SNSP is reformulated 
using recourse action model and the basic properties of 
the new formulation are investigated.

1.2.1. Stochastic Programming with Recourse Action
The most important group of stochastic programming 

models, known as recourse models, that is calculated by 
allowing recourse actions after realizations of the ran-
dom variables (T, h). Given a first-stage decision x for all 
possible realization, (q, T, h) of (q, T, h). h-T (x) Are com-
pensated at minimum costs by select second-stage deci-
sions as an optimal solution of the second-stage problem.

min
y
qy
St:
 Wy = h - Tx,
 y ϵ Y

In second-stage problem, q is the recourse action unit 
cost vector and the recourse matrix W determines the 
available technology. We will use ξ = (q, T, h) to denote 
characterize for all randomness in the problem. The ob-
jective function of this second-stage problem, determine 
the minimum recourse action costs as a function of the 
first-stage decision x and a realization of ξ, will be defined 
by v (x, ξ); its expectation Q(x) = Eξ [v(x, ξ)] gives the ex-
pected recourse action costs associated with a first-stage 
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decision x. Thus, the two-stage recourse action model is:
minxcx + Q(x)
St:
Ax = b
x ϵ X
Where, cx + Q(x) specifies the total expected costs of a 

decision x, Stougie, et al. (20). The problem SNSP can be 
formulated using the following recourse model.

(SNSP1)MINz=
∑18

i=1

∑3
j=1

∑31
t=1 pj xijt+ E [Q (x,ξ )],

S t :
Xi1t = 1

 i = 1, 2   , t ϵ TA (1)
xi2t + xi3t ≤ 1 ∀I = 3, …, 18, t ϵ T (2)
xi3t + x(ij(t+1)) ≤ 1 ∀i = 3, …, 18, t ϵ T, j = 1, 2, 3 (3)

∑2
j=1

∑31
t=1xi jt+ 2
∑31

t=1xi3t ≥ 26

 I = 1, 2, …, 18 (4)
xijt ϵ{0,1} i = 1, 2, …, 18, j = 1, 2, 3, t = 1, 2, …, 31
Where E [Q(x, ξ)] is the recourse action function, and

(SNSP2)Q (x,ξ )MIN=
∑
ξ∈B

∑3
j=1

∑31
t=1φ (ξ )QjV

ξ
jt , 

St:

Qξ
jt
=Q −∑ j−1

w=1

∑(Zj−w)
ξ

k=1

�
pw,k , j−w

�ξ

 t = 1, 2, …, 31, j = 1, 2 ,3, ξ = 1, 2, …, B (5)

Zξ
jt
≤Qξ

jt
+
�

1− hξ
jt

�
M

 t = 1, 2, …, 31 j = 1, 2, 3, ξ = 1, 2, …, B (6)

Zξ
jt
> hξ

jt
−
�

1− d ξ
jt

�
M

 t = 1, 2, …, 31 j = 1, 2, 3, ξ = 1, 2, …, B (7)

d ξ
jt
+ hξ

jt
= 1

 t = 1, 2, …, 31, j = 1, 2, 3, ξ = 1 2, …, B (8)

Aξ
jt
= Zξ

jt
hξ

jt
+Qξ

jt
d ξ

jt

 t = 1, 2, …, 31, j = 1 2, 3, ξ = 1, 2, …, B (9)

T ξ
jt
=Aξ

jt
+
∑ j−1

w=1

∑(Zj−w)
ξ

k=1

�
pw,kj−w

�ξ

 t = 1, 2 ,…, 31, j = 1, 2, 3, ξ = 1, 2, …, B (10)

Rξ
jt
≤∑T

ξ
jt

m=1

�
βmjt

�ξ

 t = 1, 2, …, 31, j = 1, 2, 3, ξ = 1, 2, …, B (11)

Rξ
jt
>
∑T ξjt

m=1

�
βmjt

�ξ
+ 1

 t = 1, 2, …, 31, j = 1, 2, 3, ξ = 1, 2, …, B (12)

Rξ
jt
>
∑18

i=1xijt−
�

1− f ξ
jt

�
M

 t = 1, 2, …, 31, j = 1, 2, 3, ξ = 1, 2, …, B (13)

Rξ
jt
≤∑18

i=1xijt+Mfξjt

 t = 1, 2, …, 31, j = 1, 2, 3, ξ = 1, 2, …, B (14)

V ξ
jt
=
�

Rξ
jt
−∑18

i=1xijt

�
f ξ
jt

 t = 1, 2, …, 31, j = 1, 2, 3, ξ = 1, 2, …, B (15)

f ξj d ξj hξj

 ϵ (0,1), M is a big number j = 1, 2, 3, ξ = 1, 2, …, B (16)
Evaluating the value of E [Q(x,ξ)] is very hard, because 

of the large random data vector ξϵB. It involves solving a 
large number similar Integer Liner Programming (ILP). 
Birge, et al. (21). As, it is difficult to solve our model ex-
actly, the following structural of the SNSP2 is proposed to 
provide an approximation.

2. Materials and Methods
Suppose that we can produce a sample ξ1, ξ1,…,ξN of N 

replications of the random vector ξ. So that each ξj, j = 
1, …, N has the same probability distribution. We can 
approximate the value of expectation function q(x) = E 
[Q(x, ξ)] by the average 

g
N (x) =

1
N

∑N
j=1

�
x,ξ j
�

 and so the “true” (expectation) problem is equal to: 

g
N (x) =C T x + 1

N

∑N
j=1Q
�

x,ξ j
�

 Shapiro, et al. (22). The following mathematical model 
explains the SAA problem of the SNSP with sample size N.

MINz=
∑18

i=1

∑3
j=1

∑31
t=1 pj xijt+

1
N

∑N
n=1

∑3
j=1

∑31
t=1OjV

n
jt , 

St:
xi1t = 1 i =1, 2   , t ϵ TA (1)
xi2t+xi3t ≤ 1 ∀I = 3, …, 18, t ϵ T (2)
xi3t+x(ij(t+1)) ≤ 1 ∀I = 3, …, 18, t ϵ T, j = 1, 2, 3 (3)

∑2
j=1

∑31
t=1xijt+ 2
∑31

t=1xi3t ≥ 26

i = 1, 2, …, 18 (4)
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Qn
jt =Q −∑ j−1

w=1

∑(zj−1)
n

k=1

�
pw,k , j−w

�n

 t = 1, 2, …, 31, j = 1, 2, 3, n = 1, 2, …, N (5)

Z n
jt ≤Qn

jt +
�

1− hn
jt

�
M

 t = 1, 2, …, 31, j = 1, 2, 3, n = 1, 2, …, N (6)

Z n
jt >Qn

jt −
�

1− d n
jt

�

 t = 1, 2, …, 31, j = 1, 2, 3, n = 1, 2, …, N (7)

d n
jt + hn

jt = 1

 t = 1, 2, …, 31, j = 1, 2, 3, n = 1, 2, …, N (8)

An
jt = Z n

jt hn
jt +Qn

jt d n
jt

 t = 1, 2, …, 31, j = 1, 2, 3, n = 1, 2, …, N (9)

T n
jt =Aξ

jt
+
∑ j−1

w=1

∑(zj−w)
n

k=1

�
pw,k , j−w

�n

 t = 1, 2, …, 31, j = 1, 2, 3, n = 1, 2, …, N (10)

Rn
jt ≤
∑T n

jt

m=1

�
βmjt

�n

 t = 1, 2,…, 31, j = 1, 2, 3, n = 1, 2, …, N (11)

Rξ
jt
>
∑T n

jt

m=1

�
βmjt

�n
+ 1

 t = 1, 2,…, 31, j = 1, 2, 3, n = 1, 2, …, N (12)

Rn
jt >
∑18

i=1xijt−
�

1− f n
jt

�
M

 t = 1, 2,…, 31, j = 1, 2, 3, n = 1, 2, …, N (13)

Rn
jt =
∑18

i=1xijt+Mfn
jt

 t = 1, 2,…, 31, j = 1, 2, 3, n = 1, 2, …, N (14)

V n
jt =
�

Rn
jt−
∑18

i=1xijt

�
f n
jt

 t = 1, 2,…, 31, j = 1, 2, 3, n = 1, 2, …, N (15)

f n
j , d n

j , hn
j

 ϵ (0, 1), M is a big number j = 1, 2, 3, n = 1, 2, …, N (16)
Kleywegt et al. (23) and Shapiro et al. (24, 25) proposed 

a general SAA algorithm for a kind of Stochastic Discrete 
Optimization Problem (SDOP). The procedure is as fol-
lows:

Suppose M be the number of replications in sample, N 
be the number of scenarios in the sampled problem, and 
N′ be the number of sample used to estimate   C T ¯

x+E
�

Q
�
µ

X,ξ
�

for a given feasible solution  ¯
X .

1. For m = 1 … M do step 1.1 through 1.3
1.1. Generate N sample ξ1, …, ξN

1.2. Solve the proposed SAA problem and ¯
z

m

N
 let ¯

X
m

N  and 
for optimal objective function value and optimal solu-
tion.

1.3. Generate 769;
N  independent random sample and evalu-

ate the objective function value g 769;
N

�
¯

X
�

 and variance for 
feasible solution 

¯
X . Different methods can be used for 

obtaining a good feasible solution ¯
X . One good method is 

that a deterministic problem with expected value param-
eters, known the Expected Value Problem (EVP). Another 
good method is solving a problem without stochastic 
constraints. This method is used for a two-stage stochas-
tic problem.

g 769;
N

�
¯

X
�
=
∑18

i=1

∑3
j=1

∑31
t=1 pj

¯
X ijt+

1
769;
N

∑769;
N
n=1

∑3
j=1

∑31
t=1OgV n

jt ,

S2

g 769;
N

�
¯

X
�= 1

769;
N
�

769;
N −1
�
∑769;

N
n=1

�∑18
i=1

∑3
j=1

∑31
t=1 pj

¯
X ijt+
∑3

j=1

∑31
t=1OjVjt

n− g 769;
N

�
¯

X
��

, 
  
2. Calculate  

¯
Z

M

N  and  
S ¯

Z
M

N

2

.

¯
Z

M

N=
1
M

∑M
m=1Z

m
N , S2

Z M
N

= 1
(M−1)M

∑M
m=1

�
Z

m
N −Z

m
N

�2
, 

3. For each solution X m
N , m = 1… M calculate the optimal-

ity gap by g 769;
N

�
X

m
N

�
− ¯

Z
m

N  and variance of.  S2
g

N

�
¯

X
M
N

�+ S2
Z M

N  Finally 
choose one of the M candidate solutions.

In the algorithm, we can obtain a lower bound (LB) and 
an upper bound (UB) to the true optimal value by estimat-
ing X

m
N  and  g769;

N

�
X

m
N

�
 respectively, Mak et al (26). ¯

Z
M

N  Is an 
unbiased estimator of optimal objective function E

�
ZN

�

that ¯
Z

M

N= E
�

ZN

�
≤ Z∗. We have that g 769;

N

�
X

m
N

�
 is an unbiased 

estimator of the true objective value, but E
�

g769;
N

�
X

m
N

�
≥ Z∗
�

.

3. Results

3.1. Example Data
This section describes a case study in Department of 

Heart Surgery in Razavi Hospital. In this department, 
there are sixteen nurses (i = 3… 18), a head nurse and an 
assistant head nurse (i = 1, 2) and we have 31 days which 
in each day there are 3 shifts (Morning, Afternoon and 
Night). The system capacity (the available total beds) is 25 
beds. In order to obtain the discrete distribution of num-
ber of new patient arriving in shift j in date t and number 
of shifts that patient k remains in system, the actual data 
of hospital is analyzed. The disruption of these stochastic 
parameters are estimated as: Zjt ~ DU [3,7] and Nkjt ~ DU 
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[5,9] for k = 1, 2, 3, …, Zjt, j = 1, 2, 3, t = 1, 2, …, 31. The regular 
and over time assignment costs for each shift are estimat-
ed 15$ and 18$, respectively.

3.2. Experimental Results
In this section, the experimental results achieved from the 

implementation of our approach in Department of Heart 
Surgery in Razavi Hospital are discussed. In our approach, 
we used N = [1-2-3-4-5-6-7-8-9-10-20-30-40-50-100], M = 20 and 
N’ = 10,000 for SAA algorithm presented in Section 3. Figure 
1 demonstrates the SAA algorithm optimal solution changes 
relative to different sample sizes of N. Although the original 
sample space in SNSP model is extremely large, a high-qual-
ity solution can be obtained by a relatively small sample 
size. For the solution of numerical experiment, a sample 
size of 100 can provide an acceptable solution. The sample 
size (i.e. the size of scenario set B) in numerical experiments 
is calculated by the sample size of Zj and Nkj which are the 
possible realization of the number of new patients arriv-
ing in shift j as well as the number of shifts that patient k 
remains in the system respectively. All experiments are not 
needed to evaluate the effects of variable sizes in our SNSP 
model. It is proven by Mak et al. (26), however, the sample 
size required to obtain optimal solutions and optimal val-
ues functions is logarithmical to the variable size. Therefore, 
the required sample size increases linearly proportional to 
a rise in the number of new patients arriving in shift j and 
number of shifts that patient k remains in system. The re-
sults concerning the achievement of optimal solutions and 
optimal values show the convergence of the SAA solutions 
with exponential rates. The EVP solution is obtained by sub-
stituting random parameters Zj and Nkj by their mean val-
ues and then solving the deterministic problem. The results 
of solving SNSP model shows that the deterministic prob-
lem (EVP) yields unsatisfactory solutions. We can obtain a 
lower bound (LB) and an upper bound (UB) for true optimal 

solutions and optimal values as functions by estimating ¯
Z

M

N  
ZNM and g 769;

N

�
X

m
N

�
 respectively. The former is an unbiased 

estimator of the optimal objective function E
�

ZN

�
 in which 

¯
Z

M

N= E
�

ZN

�
≤ Z∗ In estimating the lower bound, we can gener-

ate M independent samples of the uncertain parameters, 
each with the size N, and by solving the corresponding SAA 
problems, the optimal objective values  Z

1
N , . . . ,Z

M
N  can be ob-

tained Then, it can be estimated that: 
¯
Z

M

N=
1
N

∑M
m=1Z

m
N

It is an unbiased estimator of E
�

ZN

�
, and therefore a statis-

tical lower bound to Z*. g 769;
N

�
X

m
N

�
 is an unbiased estimator of 

the true objective value E
�

g 769;
N

�
X

m
N

��
≥ Z∗. In calculating g 769;

N

�
X

m
N

�
 

each solution X m
N , m = 1 . . . M  of random sample N ,́ the objec-

tive functions are evaluated and a statistical upper bound 
to the optimal value (Z*) of the stochastic programming 
with integer recourse is provided. For a fixed sample size, 
the proposed statistical and deterministic lower and upper 
bound techniques can be useful to validate the quality of a 
candidate optimal solution. In implementation of numeri-
cal experiments, the value of M (number of replications in 
the simulation procedure) is set to 20. Table 2 shows statis-
tical lower and upper bounds, indicating that 20 replica-
tions suffice to obtain a reasonable confidence interval for 
statistical lower and upper bounds. If the variances of sta-
tistical lower and upper bounds are too large, the value of M 
should be increased. The assignment of nurses to optimal 
sequence in the planning horizon is demonstrated in Table 
3. When assigning nurses to regular and overtime shifts, the 
proposed deterministic constraints should be considered. A 
summary of the simulation procedure and the gap calcula-
tion between stochastic nurse scheduling problem (SNSP) 
and expected value problem (EVP) is given in Figure 2. Arbi-
trarily, the run length is determined as 100 iterations. The 
results of solving SNSP model show that the solution pre-
sented by the deterministic problem (EVP) is less desirable 
than the one provided by the SAA problem, and there is an 
evident difference between SNSP and EVP solutions.
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Figure 1. Optimal Solution Changes Relative to the Sample Size N
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Table 2.  Experimental Results
Sample size N 95% CI of LB 95% CI of UB Optimally Gap
1 (19768.65772-19805.10600) (20114.17679-20124.82321) 33.63927
2 (19771.29234-19807.59600) (20009.18727-20019.28073) 32.97472
3 (19774.08897-19810.24842) (20020.23775-20018.37825) 30.66832
4 (19779.58859-19815.60311) (20029.16223-20011.74977) 27.78374
5 (19799.73321-19835.60332) (20011.70872-20018.74328) 27.12840
6 (19819.87784-19855.42524) (20010.99321-20017.33273) 25.68278
7 (19850.02246-19885.86774) (20007.15968-20013.08832) 23.08402
8 (19853.19909-19888.00364) (20017.71616-20013.95355) 23.00442
9 (19854.49571-19888.25367) (20013.82265-20016.64535) 20.84923
10 (19853.11034-19888.80847) (20016.89513-20021.16487) 18.79383
20 (19868.46904-19903.33432) (20014.91161-20018.62839) 16.12119
30 (19875.01058-19909.86800) (20021.17609-20027.33991) 13.78742
40 (19886.96421-19921.35353) (20021.20657-20023.81743) 11.74873
50 (19907.03483-19941.98752) (20008.08506-20010.14294) 10.42442
100 (19915.17946-19949.24424) (20000.12420-20003.17546) 7.32932

Table 3.  The Assignment of Nurses in Optimal Sequence in Planning Horizon
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

1 M M M M × M M M M M M × M M M M M M × M M M × M M × M M M M M
2 M M M M × M M M M M M × M M M M M M × M M M × M M × M M M M M
3 A N - M M/N - M M × A × A × × A A A × N - A × × A N - A × N - M/N
4 × N - A A A N - A A N - A A N - N - N - N - A × A A M/A M/A × M ×
5 A N - A A A × M/A N - × N - M N -- M A A A N - M M/N - × A M A M/A M/N
6 M A M × N - A × × A M M N - N - A N - N - A M/N - M M/A × A × A N
7 N - × A N - × A M/A N - N - N - A N - N - × M N - × A N - × A A
8 A A A × A N - A M/A M/N - N - A M/N - M/A A × M/A × A M/A A M/A N - A M N -
9 × M/A M/A M/A A M/A M/A N - A M/A M/A M/N - M/A M/A N - M/N - M/A M/A N - M/A M/N - M/N - N -
10 × A N - A A × N - A N - N - A N - A A A × A M/A A N - × × M/A × A
11 A M N - M/N - A N - A M/A M/A M/A × N - M/A × M N - A M/A N - M/A N - A M/A
12 × × A N - × A × A N - A M × M A M × M/A × M/N - A × A A N - N - N
13 × A N - × A A N - N - A × N - A A N - × × A M/N - A N - N × A N
14 A × N - A N - × N - N - N - N - N - A N - N - N - N - A A × A
15 M/N - M/A M/A M/N - A N - M M/A M A M M/A M/N - M/A M/A M/A M/A M/N - N - M/A M/A M M/A M/N -
16 M M/N - N - - M M/N - × A M × × A × M/N - M A A N - M N - × A A N -
17 N - A N - N - A × M A × A N - A N - N - A × N - × M/N - N - M ×
18 N - N - A × N - M/A N - N - A × N - A M N - N - A × × N - A × A
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Figure 2. Simulation Results; Total Costs
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4. Discussion
This article proposes a stochastic nurse scheduling 

model for Department of Heart Surgery in Razavi Hos-
pital in an uncertain environment. In this model the de-
mand and stay period of patients are stochastic whose the 
distribution is determined from historical data. We also 
consider the priority (vitality) of patients in our model. 
This priority factor effects the demand for nurses in each 
shift. Sample Average Approximation (SAA) algorithm is 
used to solve the proposed stochastic nurse scheduling 
model and numerical experiments are demonstrated for 
a model with real data. There are several topics for further 
research in nurse scheduling problem. First, a stochastic 
dynamic programming method can be employed for the 
new nurse scheduling problem in dynamic planning ho-
rizon. Second, in application of uncertain parameters, we 
can use of fuzzy logic and various types of membership 
functions in nurse scheduling.
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